Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-energy neutrino astrophysics

Abstract

The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously difficult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Light pools produced in IceCube by showers initiated by an electron or a tau neutrino, or the neutral current interaction of a neutrino of any of the three flavours.
Figure 2: Spectrum of secondary muons initiated by muon neutrinos that have traversed the Earth, that is, with zenith angle less than 5° above the horizon, as a function of the energy they deposit inside the detector.
Figure 3: Deposited energies, by neutrinos interacting inside IceCube, observed in four years of data.
Figure 4: Arrival directions of neutrinos in the four-year starting-event sample in Galactic coordinates.
Figure 5: Figure showing that the astrophysical neutrino flux (black line) observed by IceCube matches the corresponding cascaded gamma-ray flux (red line) observed by Fermi.
Figure 6: Upper limits at 90% confidence level on the spin-dependent neutralino–proton cross-section assuming that the neutrinos are produced by and W+W annihilation.

References

  1. 1

    Greisen, K. Cosmic ray showers. Annu. Rev. Nucl. Part. Sci. 10, 63–108 (1960).

    Article  ADS  Google Scholar 

  2. 2

    Reines, F. Neutrino interactions. Annu. Rev. Nucl. Part. Sci. 10, 1–26 (1960).

    Article  ADS  Google Scholar 

  3. 3

    Markov, M. On high energy neutrino physics. Proc. 10th Intl Conf. High-Energy Physics, Rochester, New York, 578–581 (1960).

  4. 4

    Reines, F. & Cowan, C. L. The neutrino. Nature 178, 446–449 (1956).

    Article  ADS  Google Scholar 

  5. 5

    Berezinsky, V. & Zatsepin, G. Cosmic rays at ultrahigh-energies (neutrino?). Phys. Lett. B28, 423–424 (1969).

    Article  ADS  Google Scholar 

  6. 6

    Roberts, A. The birth of high-energy neutrino astronomy: a personal history of the DUMAND project. Rev. Mod. Phys. 64, 259–312 (1992).

    Article  ADS  Google Scholar 

  7. 7

    Gaisser, T. K., Halzen, F. & Stanev, T. Particle astrophysics with high-energy neutrinos. Phys. Rep. 258, 173–236 (1995).

    Article  ADS  Google Scholar 

  8. 8

    Learned, J. & Mannheim, K. High-energy neutrino astrophysics. Annu. Rev. Nucl. Part. Sci. 50, 679–749 (2000).

    Article  ADS  Google Scholar 

  9. 9

    Halzen, F. & Hooper, D. High-energy neutrino astronomy: the cosmic ray connection. Rep. Prog. Phys. 65, 1025–1078 (2002).

    Article  ADS  Google Scholar 

  10. 10

    Becker, J. K. Status of neutrino astronomy. J. Phys. Conf. Ser. 136, 022055 (2008).

    Article  Google Scholar 

  11. 11

    Baade, W. & Zwicky, F. Cosmic rays from super-novae. Proc. Natl Acad. Sci. USA 20, 259–263 (1934).

    Article  ADS  Google Scholar 

  12. 12

    Waxman, E. Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75, 386–389 (1995).

    Article  ADS  Google Scholar 

  13. 13

    Sullivan, G. Results from the IceCube experiment. Nucl. Phys. Proc. Suppl. 235-236, 346–351 (2013).

    Article  ADS  Google Scholar 

  14. 14

    Ahrens, J. et al. Muon track reconstruction and data selection techniques in AMANDA. Nucl. Instrum. Methods A524, 169–194 (2004).

    Article  ADS  Google Scholar 

  15. 15

    Aartsen, M. et al. Energy reconstruction methods in the IceCube neutrino telescope. JINST 9, P03009 (2014).

    Article  Google Scholar 

  16. 16

    Kopper, C., Giang, W. & Kurahashi, N. Observation of astrophysical neutrinos in four years of IceCube data. PoS ICRC2015, 1081 (2015).

    Google Scholar 

  17. 17

    Schoenen, S. & Rädel, L. A measurement of the diffuse astrophysical muon neutrino flux using multiple years of IceCube data. PoS ICRC2015, 1079 (2015).

    Google Scholar 

  18. 18

    Aartsen, M. G. et al. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115, 081102 (2015).

    Article  ADS  Google Scholar 

  19. 19

    Weaver, C. Spring APS Meeting (APS, 2014).

    Google Scholar 

  20. 20

    Aartsen, M. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  21. 21

    Schönert, S., Gaisser, T. K., Resconi, E. & Schulz, O. Vetoing atmospheric neutrinos in a high energy neutrino telescope. Phys. Rev. D79, 043009 (2009).

    ADS  Google Scholar 

  22. 22

    Gaisser, T. K., Jero, K., Karle, A. & van Santen, J. A generalized self-veto probability for atmospheric neutrinos. Phys. Rev. D90, 023009 (2014).

    ADS  Google Scholar 

  23. 23

    Aartsen, M. et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014).

    Article  ADS  Google Scholar 

  24. 24

    Ahlers, M. & Halzen, F. Pinpointing extragalactic neutrino sources in light of recent IceCube observations. Phys. Rev. D90, 043005 (2014).

    ADS  Google Scholar 

  25. 25

    Aartsen, M. et al. Flavor ratio of astrophysical neutrinos above 35 TeV in IceCube. Phys. Rev. Lett. 114, 171102 (2015).

    Article  ADS  Google Scholar 

  26. 26

    Aartsen, M. et al. Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys. Rev. D91, 022001 (2014).

    ADS  Google Scholar 

  27. 27

    Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015).

    Article  ADS  Google Scholar 

  28. 28

    Glüsenkamp, T. Analysis of the cumulative neutrino flux from Fermi-LAT blazar populations using 3 years of IceCube data. Preprint at https://arXiv.org/abs/1502.03104 (2015).

  29. 29

    Padovani, P. & Resconi, E. Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events? Mon. Not. R. Astron. Soc. 443, 474–484 (2014).

    Article  ADS  Google Scholar 

  30. 30

    Padovani, P., Resconi, E., Giommi, P., Arsioli, B. & Chang, Y. L. Extreme blazars as counterparts of IceCube astrophysical neutrinos. Mon. Not. R. Astron. Soc. 457, 3582–3592 (2016).

    Article  ADS  Google Scholar 

  31. 31

    Krauß, F. et al. TANAMI blazars in the IceCube PeV neutrino fields. Astron. Astrophys. 566, L7 (2014).

    Article  ADS  Google Scholar 

  32. 32

    Kadler, M. et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Preprint at https://arXiv.org/abs/1602.02012 (2016).

  33. 33

    Feldstein, B., Kusenko, A., Matsumoto, S. & Yanagida, T. T. Neutrinos at IceCube from heavy decaying dark matter. Phys. Rev. D88, 015004 (2013).

    ADS  Google Scholar 

  34. 34

    Esmaili, A. & Serpico, P. D. Are IceCube neutrinos unveiling PeV-scale decaying dark matter? JCAP 1311, 054 (2013).

    Article  ADS  Google Scholar 

  35. 35

    Bai, Y., Lu, R. & Salvado, J. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin. JHEP 1601, 161 (2016).

    Article  ADS  Google Scholar 

  36. 36

    Bhattacharya, A., Reno, M. H. & Sarcevic, I. Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube. JHEP 1406, 110 (2014).

    Article  ADS  Google Scholar 

  37. 37

    Esmaili, A., Kang, S. K. & Serpico, P. D. IceCube events and decaying dark matter: hints and constraints. JCAP 1412, 054 (2014).

    Article  ADS  Google Scholar 

  38. 38

    Cherry, J. F., Friedland, A. & Shoemaker, I. M. Neutrino portal dark matter: from dwarf galaxies to IceCube. JCAP 12, 054 (2014).

    Google Scholar 

  39. 39

    Murase, K., Laha, R., Ando, S. & Ahlers, M. Testing the dark matter scenario for PeV neutrinos observed in IceCube. Phys. Rev. Lett. 115, 071301 (2015).

    Article  ADS  Google Scholar 

  40. 40

    Esmaili, A. & Serpico, P. D. Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints. JCAP 10, 014 (2015).

    Article  ADS  Google Scholar 

  41. 41

    Aartsen, M. et al. Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 110, 131302 (2013).

    Article  ADS  Google Scholar 

  42. 42

    Abbasi, R. et al. Search for dark matter from the galactic halo with the IceCube neutrino observatory. Phys. Rev. D84, 022004 (2011).

    ADS  Google Scholar 

  43. 43

    Abbasi, R. et al. Search for neutrinos from annihilating dark matter in the direction of the galactic center with the 40-string IceCube neutrino observatory. Preprint at https://arxiv.org/abs/1210.3557 (2012).

  44. 44

    Aartsen, M. et al. IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters. Phys. Rev. D88, 122001 (2013).

    ADS  Google Scholar 

  45. 45

    Rameez, M., Monaruli, T. & Vallecorsa, S. (for the IceCube Collaboration) Search for dark matter annihilations in the Sun using the completed IceCube neutrino telescope number. PoS ICRC2015, 1209 (2015).

    Google Scholar 

  46. 46

    Zoll, M. (for the IceCube Collaboration) Improved methods for solar dark matter searches with the IceCube neutrino telescope number. PoS ICRC2015, 1099 (2015).

    Google Scholar 

  47. 47

    Gondolo, P. et al. DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 0407, 008 (2004).

    Article  ADS  Google Scholar 

  48. 48

    Ullio, P., Kamionkowski, M. & Vogel, P. Spin dependent WIMPs in DAMA? JHEP 07, 044 (2001).

    Article  ADS  Google Scholar 

  49. 49

    Aartsen, M. et al. IceCube-Gen2: a vision for the future of neutrino astronomy in Antarctica. Preprint at https://arXiv.org/abs/1412.5106 (2014).

  50. 50

    Zheleznykh, I. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy (1957–1962). Intl J. Mod. Phys. 21, 1–11 (2006).

    Article  ADS  MATH  Google Scholar 

  51. 51

    Markov, M. & Zheleznykh, I. On high energy neutrino physics in cosmic rays. Nucl. Phys. 27, 385–394 (1961).

    Article  Google Scholar 

  52. 52

    Babson, J. et al. Cosmic ray muons in the deep ocean. Phys. Rev. D42, 3613–3620 (1990).

    ADS  Google Scholar 

  53. 53

    Balkanov, V. et al. The BAIKAL neutrino project: status report. Nucl. Phys. Proc. Suppl. 118, 363–370 (2003).

    Article  ADS  Google Scholar 

  54. 54

    Aggouras, G. et al. A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope. Astropart. Phys. 23, 377–392 (2005).

    Article  ADS  Google Scholar 

  55. 55

    Aguilar, J. et al. First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope. Astropart. Phys. 26, 314–324 (2006).

    Article  ADS  Google Scholar 

  56. 56

    Migneco, E. Progress and latest results from Baikal, Nestor, NEMO and KM3NeT. J. Phys. Conf. Ser. 136, 022048 (2008).

    Article  Google Scholar 

  57. 57

    Margiotta, A. Status of the KM3NeT project. JINST 9, C04020 (2014).

    Article  Google Scholar 

  58. 58

    Ahrens, J. et al. Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astropart. Phys. 20, 507–532 (2004).

    Article  ADS  Google Scholar 

  59. 59

    Halzen, F. & Klein, S. R. IceCube: an instrument for neutrino astronomy. Rev. Sci. Instrum. 81, 081101 (2010).

    Article  ADS  Google Scholar 

  60. 60

    Halzen, F. Neutrino astronomy: an update. Riv. Nuovo Cimento 36, 81–104 (2013).

    Google Scholar 

  61. 61

    Aartsen, M. et al. Search for neutrino-induced particle showers with IceCube-40. Phys. Rev. D89, 102001 (2014).

    ADS  Google Scholar 

  62. 62

    Murase, K., Ahlers, M. & Lacki, B. C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D88, 121301 (2013).

    ADS  Google Scholar 

  63. 63

    Choi, K. et al. Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande. Phys. Rev. Lett. 114, 141301 (2015).

    Article  ADS  Google Scholar 

  64. 64

    Tönnis, C. et al. Overview of dark matter searches with ANTARES number. PoS ICRC2015, 1207 (2015).

    Google Scholar 

  65. 65

    Avrorin, A. D. et al. Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector. Astropart. Phys. 62, 12–20 (2014).

    Article  ADS  Google Scholar 

  66. 66

    Boliev, M. M., Demidov, S. V., Mikheyev, S. P. & Suvorova, O. V. Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years. JCAP 1309, 019 (2013).

    Article  ADS  Google Scholar 

  67. 67

    Amole, C. et al. Dark matter search results from the PICO-2L C3F8 bubble chamber. Phys. Rev. Lett. 114, 231302 (2015).

    Article  ADS  Google Scholar 

  68. 68

    Savage, C., Gelmini, G., Gondolo, P. & Freese, K. Compatibility of DAMA/LIBRA dark matter detection with other searches. JCAP 0904, 010 (2009).

    Article  ADS  Google Scholar 

  69. 69

    Aalseth, C. E. et al. Search for an annual modulation in a p-type point contact germanium dark matter detector. Phys. Rev. Lett. 107, 141301 (2011).

    Article  ADS  Google Scholar 

  70. 70

    Agnese, R. et al. Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev Lett. 111, 251301 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussion with collaborators inside and outside the IceCube Collaboration, too many to be listed, have greatly shaped this presentation. Thanks. This research was supported in part by the US National Science Foundation under Grant Nos ANT-0937462 and PHY-1306958 and by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francis Halzen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halzen, F. High-energy neutrino astrophysics. Nature Phys 13, 232–238 (2017). https://doi.org/10.1038/nphys3816

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing