Time reversal and holography with spacetime transformations

Abstract

Wave control is usually performed by spatially engineering the properties of a medium. Because time and space play similar roles in wave propagation, manipulating time boundaries provides a complementary approach. Here, we experimentally demonstrate the relevance of this concept by introducing instantaneous time mirrors. We show with water waves that a sudden change of the effective gravity generates time-reversed waves that refocus at the source. We generalize this concept for all kinds of waves, introducing a universal framework which explains the effect of any time disruption on wave propagation. We show that sudden changes of the medium properties generate instant wave sources that emerge instantaneously from the entire space at the time disruption. The time-reversed waves originate from these ‘Cauchy sources’, which are the counterpart of Huygens virtual sources on a time boundary. It allows us to revisit the holographic method and introduce a new approach for wave control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the instantaneous time mirror.
Figure 2: ITM experimental implementation.
Figure 3: ITM on a wavepacket.
Figure 4: Image sequence of the instantaneous time reversal of a complex wave field.
Figure 5: The time equivalent of a mirror.

References

  1. 1

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS  Article  Google Scholar 

  2. 2

    Bojarski, N. A survey of the near-field far-field inverse scattering inverse source integral equation. IEEE Trans. Antenna Propag. 30, 975–979 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Fink, M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 39, 555–66 (1992).

    Article  Google Scholar 

  4. 4

    Fink, M. Time-reversal waves and super resolution. J. Phys. 124, 012004 (2008).

    Google Scholar 

  5. 5

    Draeger, C. & Fink, M. One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity. Phys. Rev. Lett. 79, 407–410 (1997).

    ADS  Article  Google Scholar 

  6. 6

    Lerosey, G. et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 193904 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Przadka, A. et al. Time reversal of water waves. Phys. Rev. Lett. 109, 064501 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Chabchoub, A. & Fink, M. Time-reversal generation of rogue waves. Phys. Rev. Lett. 112, 124101 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Yariv, A. Four wave nonlinear optical mixing as real time holography. Opt. Commun. 25, 23–25 (1978).

    ADS  Article  Google Scholar 

  12. 12

    Miller, D. A. B. Time reversal of optical pulses by four-wave mixing. Opt. Lett. 5, 300–302 (1980).

    ADS  Article  Google Scholar 

  13. 13

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nature Mater. 9, 387–396 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Mendonça, J. T. & Shukla, P. K. Time refraction and time reflection: two basic concepts. Phys. Scripta 65, 160–163 (2002).

    ADS  Article  Google Scholar 

  18. 18

    Mendonça, J. T., Martins, A. M. & Guerreiro, A. Temporal beam splitter and temporal interference. Phys. Rev. A 68, 043801 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Salem, M. A. & Caloz, C. Space-time cross-mapping and application to wave scattering. Preprint at http://arXiv.org/abs/1504.02012 (2015).

  20. 20

    Xiao, Y., Maywar, D. N. & Agrawal, G. P. Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 39, 574–577 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Jaskula, J.-C. et al. Acoustic analog to the dynamical Casimir effect in a Bose–Einstein condensate. Phys. Rev. Lett. 109, 220401 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Mendonça, J. T., Tito, J., Brodin, G. & Marklund, M. Vacuum effects in a vibrating cavity: time refraction, dynamical Casimir effect, and effective Unruh acceleration. Phys. Lett. A 372, 5621–5624 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Mendonça, J. T. Theory of Photon Acceleration (CRC Press, 2000).

    Google Scholar 

  24. 24

    Alfano, R. R. The Supercontinuum Laser Source (Springer, 1989).

    Google Scholar 

  25. 25

    Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Chumak, A. V. et al. All-linear time reversal by a dynamic artificial crystal. Nature Commun. 1, 141 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Sivan, Y. & Pendry, J. B. Time-reversal in dynamically-tuned zero-gap periodic systems. Phys. Rev. Lett. 106, 193902 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Dover Phoenix editions, Dover Publications, 2003).

    Google Scholar 

  30. 30

    Loschmidt, J. Über den Zustand des Wärmegleichgewichts eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Sitz. Akad. Wiss. Wien 2, 128–142 (1876).

    Google Scholar 

  31. 31

    Jalabert, R. & Pastawski, H. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493 (2001).

    ADS  Article  Google Scholar 

  32. 32

    Huygens, Chr. Traitė de la Lumière (Leyden, 1690), English translation by SP Thompson, Treatise on Light (Macmillan, 1912).

    Google Scholar 

  33. 33

    Fresnel, A. Mémoire sur la diffraction de la lumière. Ann. Chim. Phys. 2, 239–281 (1816).

    Google Scholar 

  34. 34

    Kirchhoff, G. Zur Theorie der Lichtstrahlen. Ann. Phys. 254, 663–695 (1883).

    Article  Google Scholar 

  35. 35

    Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Couder and S. Perrard for fruitful and stimulating discussions. We thank A. Souilah and X. Benoit-Gonin for their help in building the experimental set-up. The authors acknowledge the support of the AXA research fund and LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the French Program ‘Investments for the Future’ under reference ANR-10-IDEX-0001-02 PSL.

Author information

Affiliations

Authors

Contributions

All the authors discussed, interpreted the results and conceived the theoretical framework. M.F. and E.F. conceived the initial concept. V.B., A.E., M.F. and E.F. designed the experiment. V.B. and A.E. performed the experiments. M.L. extended the model to water waves and designed the simulations. V.B., M.F. and E.F. wrote the paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mathias Fink or Emmanuel Fort.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1489 kb)

41567_2016_BFnphys3810_MOESM33_ESM.avi

Supplementary Movie (AVI 2223 kb)

Supplementary Movie 1

Supplementary Movie (AVI 2223 kb)

41567_2016_BFnphys3810_MOESM34_ESM.mp4

Supplementary Movie (MP4 2296 kb)

Supplementary Movie 2

Supplementary Movie (MP4 2296 kb)

41567_2016_BFnphys3810_MOESM35_ESM.mp4

Supplementary Movie (MP4 3093 kb)

Supplementary Movie 3

Supplementary Movie (MP4 3093 kb)

41567_2016_BFnphys3810_MOESM36_ESM.mp4

Supplementary Movie (MP4 2250 kb)

Supplementary Movie 4

Supplementary Movie (MP4 2250 kb)

41567_2016_BFnphys3810_MOESM37_ESM.mp4

Supplementary Movie (MP4 4171 kb)

Supplementary Movie 5

Supplementary Movie (MP4 4171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bacot, V., Labousse, M., Eddi, A. et al. Time reversal and holography with spacetime transformations. Nature Phys 12, 972–977 (2016). https://doi.org/10.1038/nphys3810

Download citation

Further reading