Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological semimetals with helicoid surface states

Abstract

We show that the surface dispersions of topological semimetals map to helicoidal structures, where the bulk nodal points project to the branch points of the helicoids whose equal-energy contours are Fermi arcs. This mapping is demonstrated in the recently discovered Weyl semimetals and leads us to predict new types of topological semimetals, whose surface states are represented by double- and quad-helicoid surfaces. Each helicoid or multi-helicoid is shown to be the non-compact Riemann surface representing a multi-valued holomorphic function (generating function). The intersection of multiple helicoids, or the branch cut of the generating function, appears on high-symmetry lines in the surface Brillouin zone, where surface states are guaranteed to be doubly degenerate by a glide reflection symmetry. We predict the heterostructure superlattice [(SrIrO3)2(CaIrO3)2] to be a topological semimetal with double-helicoid surface states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The helicoid and double-helicoid surface states.
Figure 2: Lattice and electronic structure of the iridates superlattice.
Figure 3: Surface state dispersion on the (001)-surface of the iridates superlattice.
Figure 4: Quad-helicoid surface state dispersion.

Similar content being viewed by others

References

  1. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  Google Scholar 

  2. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Preprint at http://arXiv.org/abs/1505.03535 (2015).

  3. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  4. Hosur, P., Parameswaran, S. A. & Vishwanath, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 108, 046602 (2012).

    ADS  Google Scholar 

  5. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Google Scholar 

  6. Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    ADS  Google Scholar 

  7. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    ADS  Google Scholar 

  8. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  9. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang., Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  10. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    ADS  Google Scholar 

  11. Lu, L., Fu, L., Joannopoulos, J. D. & Soljacic, M. Weyl points and line nodes in gyroid photonic crystals. Nature Photon. 7, 294–299 (2013).

    ADS  Google Scholar 

  12. Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

    ADS  Google Scholar 

  13. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  14. Huang, S.-M. et al. An inversion breaking Weyl semimetal state in the taas material class. Nature Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  15. Soluyanov, A. A. et al. Type-ii Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  16. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Google Scholar 

  17. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    ADS  Google Scholar 

  18. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    ADS  Google Scholar 

  19. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nature Commun. 5, 4898 (2014).

    ADS  Google Scholar 

  20. Zeng, M. et al. Topological semimetals and topological insulators in rare earth monopnictides. Preprint at http://arXiv.org/abs/1504.03492 (2015).

  21. Chiu, C.-K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phys. Rev. B 90, 205136 (2014).

    ADS  Google Scholar 

  22. Phillips, M. & Aji, V. Tunable line node semimetals. Phys. Rev. B 90, 115111 (2014).

    ADS  Google Scholar 

  23. Mullen, K., Uchoa, B. & Glatzhofer, D. T. Line of Dirac nodes in hyperhoneycomb lattices. Phys. Rev. Lett. 115, 026403 (2015).

    ADS  Google Scholar 

  24. Weng, H. et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015).

    ADS  Google Scholar 

  25. Xie, L. S. et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater. 3, 083602 (2015).

    ADS  Google Scholar 

  26. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    ADS  Google Scholar 

  27. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    ADS  Google Scholar 

  28. Rhim, J.-W. & Kim, Y. B. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra. Phys. Rev. B 92, 045126 (2015).

    ADS  Google Scholar 

  29. Carter, J.-M., Shankar, V. V., Zeb, M. A. & Kee, H.-Y. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85, 115105 (2012).

    ADS  Google Scholar 

  30. Chen, Y., Lu, Y.-M. & Kee, H.-Y. Topological crystalline metal in orthorhombic perovskite iridates. Nature Commun. 6, 6593 (2015).

    ADS  Google Scholar 

  31. Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    ADS  Google Scholar 

  32. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 57–82 (2016).

    Google Scholar 

  33. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  34. Xu, S.-Y. et al. Experimental realization of a topological Weyl semimetal phase with Fermi arc surface states in TaAs. Science 349, 613–617 (2015).

    ADS  Google Scholar 

  35. Lv, B. Q. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  36. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys. 11, 645–649 (2015).

    ADS  Google Scholar 

  37. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nature Phys. 11, 724–727 (2015).

    ADS  Google Scholar 

  38. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys. 11, 728–732 (2015).

    ADS  Google Scholar 

  39. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Phys. 11, 748–754 (2015).

    ADS  Google Scholar 

  40. Zhang, C. et al. Tantalum monoarsenide: an exotic compensated semimetal. Preprint at http://arXiv.org/abs/1502.00251 (2015).

  41. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  42. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nature Mater. 13, 677–681 (2014).

    ADS  Google Scholar 

  43. Liu, Z. K. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    ADS  Google Scholar 

  44. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    ADS  Google Scholar 

  45. He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    ADS  Google Scholar 

  46. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 . Nature Mater. 13, 851–856 (2014).

    ADS  Google Scholar 

  47. Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    ADS  Google Scholar 

  48. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  49. Bian, G. et al. Topological nodal-line fermions in the spin–orbit metal PbTaSe2 . Nature Commun. 7, 10556 (2016).

    ADS  Google Scholar 

  50. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Commun. 5, 5161 (2014).

    ADS  Google Scholar 

  51. Kargarian, M., Randeria, M. & Lu, Y.-M. Are the double Fermi arcs of Dirac semimetals topologically protected? Preprint at http://arXiv.org/abs/1509.02180v1 (2015).

  52. Matsuno, J. et al. Engineering a spin-orbital magnetic insulator by tailoring superlattices. Phys. Rev. Lett. 114, 247209 (2015).

    ADS  Google Scholar 

  53. Weyl, H. The Concept of a Riemann Surface (Dover, 2009).

    Google Scholar 

  54. Li, S. & Andreev, A. V. Spiraling Fermi arcs in Weyl materials. Phys. Rev. B 92, 201107 (2015).

    ADS  Google Scholar 

  55. Knopp, K. Theory of Functions Parts I and II, Two Volumes Bound as One, Part II (Dover, 1996).

    Google Scholar 

  56. Peskin, M. E. An Introduction to Quantum Field Theory (Westview, 1995).

    Google Scholar 

  57. Parameswaran, S. A., Turner, A. M., Arovas, D. P. & Vishwanath, A. Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nature Phys. 9, 299–303 (2013).

    ADS  Google Scholar 

  58. Freed, D. S. & Moore, G. W. Twisted equivariant matter. Ann. Henri Poincare 14, 1927–2023 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  59. Liu, C.-X., Zhang, R.-X. & VanLeeuwen, B. K. Topological nonsymmorphic crystalline insulators. Phys. Rev. B 90, 085304 (2014).

    ADS  Google Scholar 

  60. Fang, C. & Fu, L. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015).

    ADS  Google Scholar 

  61. Shiozaki, K., Sato, M. & Gomi, K. Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states. Phys. Rev. B 91, 155120 (2015).

    ADS  Google Scholar 

  62. Varjas, D., de Juan, F. & Lu, Y.-M. Bulk invariants and topological response in insulators and superconductors with nonsymmorphic symmetries. Phys. Rev. B 92, 195116 (2015).

    ADS  Google Scholar 

  63. Watanabe, H., Po, H. C., Vishwanath, A. & Zaletel, M. P. Filling constraints for spin-orbit coupled insulators in symmorphic and non-symmorphic crystals. Proc. Natl Acad. Sci. USA 112, 14551–14556 (2015).

    ADS  Google Scholar 

  64. Lu, L. et al. Symmetry-protected topological photonic crystal in three dimensions. Nature Phys. 12, 337–340 (2016).

    ADS  Google Scholar 

  65. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    ADS  Google Scholar 

  66. Kramers, H. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Amsterdam Akad. 33, 959–972 (1930).

    MATH  Google Scholar 

  67. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Google Scholar 

  68. Kress, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  69. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Google Scholar 

  70. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  71. Sancho, M. P. L., Sancho, J. M. L. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851–858 (1985).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank T. H. Hsieh for discussions. C.F. thanks Y. Chen for helpful discussions on the tight-binding model. C.F. thanks J.L. for fruitful discussions on potential material systems. C.F. and L.F. were supported by S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award no. DE-SC0001299/DE-FG02-09ER46577. C.F. was also supported by the National Thousand-Young-Talents Program of China. L.L. was supported in part by USARO through the ISN under Contract no. W911NF-13-D-0001, in part by the MRSEC Program of the NSF under Award no. DMR-1419807, and in part by the MIT S3TEC EFRC of DOE under Grant no. DE-SC0001299. J.L. was supported by the STC Center for Integrated Quantum Materials, NSF Grant no. DMR-1231319.

Author information

Authors and Affiliations

Authors

Contributions

C.F. and L.L. conceived the mapping between surface state dispersions and helicoids; L.F. planned the project; C.F. and L.F. performed the band topology analysis; J.L. performed the first-principles calculation and all authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Chen Fang or Liang Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Lu, L., Liu, J. et al. Topological semimetals with helicoid surface states. Nature Phys 12, 936–941 (2016). https://doi.org/10.1038/nphys3782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing