Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging chiral symmetry breaking from Kekulé bond order in graphene

Abstract

Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adatom-induced Kekulé distortion (KD) in graphene.
Figure 2: Visualizing the Kekulé distortion in graphene.
Figure 3: Mechanism of hidden Kekulé order.
Figure 4: Relating adatom and graphene Kekulé order.
Figure 5: Relationship between the copper substrate and graphene.
Figure 6: Formation of hidden Kekulé order at high temperature.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007).

    Article  ADS  Google Scholar 

  3. Ryu, S., Mudry, C., Hou, C. Y. & Chamon, C. Masses in graphenelike two-dimensional electronic systems: topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B 80, 205319 (2009).

    Article  ADS  Google Scholar 

  4. Weeks, C. & Franz, M. Interaction-driven instabilities of a Dirac semimetal. Phys. Rev. B 81, 085105 (2010).

    Article  ADS  Google Scholar 

  5. García-Martínez, N. A., Grushin, A. G., Neupert, T., Valenzuela, B. & Castro, E. V. Interaction-driven phases in the half-filled spinless honeycomb lattice from exact diagonalization. Phys. Rev. B 88, 245123 (2013).

    Article  ADS  Google Scholar 

  6. Cheianov, V. V., Fal’ko, V. I., Syljuåsen, O. & Altshuler, B. L. Hidden Kekulé ordering of adatoms on graphene. Solid State Commun. 149, 1499–1501 (2009).

    Article  ADS  Google Scholar 

  7. Cheianov, V. V., Syljuåsen, O., Altshuler, B. L. & Fal’ko, V. Ordered states of adatoms on graphene. Phys. Rev. B 80, 233409 (2009).

    Article  ADS  Google Scholar 

  8. Kopylov, S., Cheianov, V., Altshuler, B. L. & Fal’ko, V. I. Transport anomaly at the ordering transition for adatoms on graphene. Phys. Rev. B 83, 201401 (2011).

    Article  ADS  Google Scholar 

  9. Chamon, C. Solitons in carbon nanotubes. Phys. Rev. B 62, 2806–2812 (2000).

    Article  ADS  Google Scholar 

  10. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  11. Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961).

    Article  ADS  Google Scholar 

  12. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  ADS  Google Scholar 

  13. Hou, C.-Y., Chamon, C. & Mudry, C. Deconfined fractional electric charges in graphene at high magnetic fields. Phys. Rev. B 81, 075427 (2010).

    Article  ADS  Google Scholar 

  14. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article  ADS  Google Scholar 

  15. Marianetti, C. A. & Yevick, H. G. Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010).

    Article  ADS  Google Scholar 

  16. Brown, L. et al. Polycrystalline graphene with single crystalline electronic structure. Nano Lett. 14, 5706–5711 (2014).

    Article  ADS  Google Scholar 

  17. Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    Article  ADS  Google Scholar 

  18. Zhao, L. et al. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011).

    Article  ADS  Google Scholar 

  19. Coraux, J., N’Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 8, 565–570 (2008).

    Article  ADS  Google Scholar 

  20. Arguello, C. J. et al. Visualizing the charge density wave transition in 2H-NbSe2 in real space. Phys. Rev. B 89, 235115 (2014).

    Article  ADS  Google Scholar 

  21. Ruffieux, P. et al. Charge-density oscillation on graphite induced by the interference of electron waves. Phys. Rev. B 71, 153403 (2005).

    Article  ADS  Google Scholar 

  22. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  Google Scholar 

  23. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009).

    Article  ADS  Google Scholar 

  24. Mallet, P. et al. Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy. Phys. Rev. B 86, 045444 (2012).

    Article  ADS  Google Scholar 

  25. Song, C.-L. et al. Charge-transfer-induced cesium superlattices on graphene. Phys. Rev. Lett. 108, 156803 (2012).

    Article  ADS  Google Scholar 

  26. Schmid, M. & Varga, P. in The Chemical Physics of Solid Surfaces Vol. 10 (ed. Woodruff, D. P.) 118–151 (Elsevier, 2002).

    Google Scholar 

  27. Starodub, E. et al. Graphene growth by metal etching on Ru (0001). Phys. Rev. B 80, 235422 (2009).

    Article  ADS  Google Scholar 

  28. Günther, C., Vrijmoeth, J., Hwang, R. Q. & Behm, R. J. Strain relaxation at hexagonally close-packed metal–metal interfaces. Phys. Rev. Lett. 74, 754–757 (1995).

    Article  ADS  Google Scholar 

  29. Hamilton, J. C. & Foiles, S. M. Misfit dislocation structure for close-packed metal–metal interfaces. Phys. Rev. Lett. 75, 882–885 (1995).

    Article  ADS  Google Scholar 

  30. Shao, S., Wang, J., Misra, A. & Hoagland, R. G. Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3, 2448 (2013).

    Article  ADS  Google Scholar 

  31. Zhao, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999–1003 (2011).

    Article  ADS  Google Scholar 

  32. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nature Phys. 7, 43–47 (2011).

    Article  ADS  Google Scholar 

  33. Otero, G. et al. Ordered vacancy network induced by the growth of epitaxial graphene on Pt(111). Phys. Rev. Lett. 105, 216102 (2010).

    Article  ADS  Google Scholar 

  34. Meunier, I., Tréglia, G., Gay, J.-M., Aufray, B. & Legrand, B. Ag/Cu(111) structure revisited through an extended mechanism for stress relaxation. Phys. Rev. B 59, 10910–10917 (1999).

    Article  ADS  Google Scholar 

  35. van Gastel, R., Somfai, E., van Albada, S. B., van Saarloos, W. & Frenken, J. W. Nothing moves a surface: vacancy mediated surface diffusion. Phys. Rev. Lett. 86, 1562–1565 (2001).

    Article  ADS  Google Scholar 

  36. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  37. Stöhr, J. NEXAFS Spectroscopy Vol. 25 (Springer Science & Business Media, 2013).

    Google Scholar 

  38. Brühwiler, P. A. et al. π and σ excitons in C 1s absorption of graphite. Phys. Rev. Lett. 74, 614–617 (1995).

    Article  ADS  Google Scholar 

  39. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  40. Tersoff, J. & Hamann, D. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  ADS  Google Scholar 

  41. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  Google Scholar 

  42. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. W. Flynn, C. Marianetti, I. L. Aleiner, B. L. Altshuler and C. J. Arguello for helpful discussions and L. Zhao for sharing Gr-Cu(111) bulk crystal data. This work is supported by the Office of Naval Research (ONR) (award number N00014-14-1-0501, C.G.) and by the Air Force Office of Scientific Research (AFOSR) (award number FA9550-11-1-0010, A.N.P.). Work at Cornell University is supported by the NSF through the Cornell Center for Materials Research (NSF DMR-1120296) (J.P.). Support for synthesis and characterization was provided by ONR (N00014-12-1-0791) (K.M.S.), AFOSR (FA9550-11-1-0033 and FA2386-13-1-4118) (J.P.) and the Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2012M3A7B4049887) (J.P.). NEXAFS data was measured at beamline 8-2 at the Stanford Synchrotron Radiation Lightsource, a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences (T.S., D.N.) and supported (T.S.) by the NSF MRSEC Program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634).

Author information

Authors and Affiliations

Authors

Contributions

C.G. measured and analysed STM and Raman spectroscopy data and performed DFT and molecular statics calculations. C.-J.K., L.B., and E.B.L. performed CVD growth of graphene samples. J.P. and K.M.S. supervised the CVD sample growth. A.N.P. supervised STM measurements. T.S. and D.N. measured and analysed NEXAFS data. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Abhay N. Pasupathy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, C., Kim, CJ., Brown, L. et al. Imaging chiral symmetry breaking from Kekulé bond order in graphene. Nature Phys 12, 950–958 (2016). https://doi.org/10.1038/nphys3776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing