Inertial-confinement fusion with lasers

A Corrigendum to this article was published on 30 June 2016

This article has been updated

Abstract

The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematics of indirect- and direct-drive ICF.
Figure 2: Performance of indirect- and direct-drive ICF in terms of the Lawson parameter and ion temperature Tion.
Figure 3: Indirect-drive target and laser pulse.
Figure 4: OMEGA direct-drive target and laser pulse.
Figure 5: Schematics of the CBET process.
Figure 6: OMEGA fast-ignition targets.
Figure 7: OMEGA shock-ignition experiments.
Figure 8: Magnetic fields used in imploding targets.

Change history

  • 01 June 2016

    In the version of this Review Article originally published, the size of the gold hohlraum described in the section 'Laser indirect drive' was incorrect and it should have read '5.75 mm in diameter'. This has been corrected in the online versions after print 1 June 2016.

References

  1. 1

    Nuckolls, J. et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239, 139–142 (1972).

    Article  ADS  Google Scholar 

  2. 2

    Atzeni, S. & Meyer-ter-vehn, J. The Physics of Inertial Fusion (Clarendon, 2004).

    Google Scholar 

  3. 3

    Lindl, J. D. Inertial Confinement Fusion (Springer, 1998).

    Google Scholar 

  4. 4

    Lawson, J. D. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. Lond. B 70, 6–10 (1957).

    Article  ADS  Google Scholar 

  5. 5

    Betti, R. et al. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas 17, 058102 (2010).

    Article  ADS  Google Scholar 

  6. 6

    Zhou, C. D. & Betti, R. Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions. Phys. Plasmas 14, 072703 (2008).

    Article  ADS  Google Scholar 

  7. 7

    Glebov, V. Y. et al. Development of nuclear diagnostics for the National Ignition Facility. Rev. Sci. Instrum. 77, 10E715 (2006).

    Article  Google Scholar 

  8. 8

    Frenje, J. A. et al. Probing high areal-density cryogenic deuterium–tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometer. Phys. Plasmas 17, 056311 (2010).

    Article  ADS  Google Scholar 

  9. 9

    Casey, D. T. et al. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF. Rev. Sci. Instrum. 84, 043506 (2013).

    Article  ADS  Google Scholar 

  10. 10

    Kishony, R. & Shvarts, D. Ignition condition and gain prediction for perturbed inertial confinement fusion targets. Phys. Plasmas 8, 4925–4936 (2001).

    Article  ADS  Google Scholar 

  11. 11

    Campbell, E. M. & Hogan, W. J. The National Ignition Facility—applications for inertial fusion energy and high-energy-density science. Plasma Phys. Control. Fusion 41, B39 (1999).

    Article  Google Scholar 

  12. 12

    Moses, E. I. Ignition on the National Ignition Facility. J. Phys. Conf. Ser. 112, 012003 (2008).

    Article  Google Scholar 

  13. 13

    Hurricane, O. A. et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–348 (2014).

    Article  ADS  Google Scholar 

  14. 14

    Patel, P. et al. Performance of DT layered implosions on the NIF. in 55th Ann. Meet. APS Div. Plasma Phys. NO4.00001 (American Physical Society, 2013); http://meetings.aps.org/link/BAPS.2013.DPP.NO4.1

    Google Scholar 

  15. 15

    Cerjan, C., Springer, P. T. & Sepke, S. M. Integrated diagnostic analysis of inertial confinement fusion capsule performance. Phys. Plasmas 20, 056319 (2013).

    Article  ADS  Google Scholar 

  16. 16

    Doeppner, T. et al. Demonstration of high performance in layered deuterium–tritium capsule implosions in uranium hohlraums at the National Ignition Facility. Phys. Rev. Lett. 115, 055001 (2015).

    Article  ADS  Google Scholar 

  17. 17

    Betti, R. et al. Alpha heating and burning plasmas in inertial confinement fusion. Phys. Rev. Lett. 114, 255003 (2015).

    Article  ADS  Google Scholar 

  18. 18

    Hurricane, O. A. et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Phys. http://dx.doi.org/10.1038/nphys3720 (2016).

  19. 19

    Neiuport, J. et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities. Appl. Opt. 44, 3143–3152 (2005).

    Article  ADS  Google Scholar 

  20. 20

    Boehly, T. R. et al. Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495–506 (1997).

    Article  ADS  Google Scholar 

  21. 21

    Obenschain, S. P. et al. The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas 3, 2098–2107 (1996).

    Article  ADS  Google Scholar 

  22. 22

    Gardner, J. H. & Bodner, S. E. Wavelength scaling for reactor-size laser-fusion targets. Phys. Rev. Lett. 47, 1137–1140 (1981).

    Article  ADS  Google Scholar 

  23. 23

    Bodner, E. S. et al. Direct-drive laser fusion: status and prospects. Phys. Plasmas 5, 1901–1918 (1998).

    Article  ADS  Google Scholar 

  24. 24

    Goncharov, V. N. et al. A model of laser imprinting. Phys. Plasmas 7, 2062–2068 (2000).

    Article  ADS  Google Scholar 

  25. 25

    Kruer, W. L. in The Physics of Laser–Plasma Interactions, Frontiers in Physics Vol. 73 (ed. Pines, D.) Ch. 6–8 (Addison-Wesley, 1988).

    Google Scholar 

  26. 26

    Kidder, R. E. Hot-electron preheat of laser-driven targets. Nucl. Fusion 21, 145–151 (1981).

    Article  ADS  Google Scholar 

  27. 27

    Regan, S. P. et al. Demonstration of 55 ± 7-Gbar hot-spot pressure in direct-drive layered DT cryogenic implosions on OMEGA. in 57th Ann. Meet. Div. Plasma Phys. CI3.00005 (American Physical Society, 2015).

    Google Scholar 

  28. 28

    Bose, A. et al. Effects of long- and intermediate-wavelength nonuniformities on hot-spot energetics of hydrodynamic equivalent targets. in 57th Ann. Meet. Div. Plasma Phys. GO5.00004 (American Physical Society, 2015).

    Google Scholar 

  29. 29

    Tabak, M. et al. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994).

    Article  ADS  Google Scholar 

  30. 30

    Betti, R. et al. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  31. 31

    Theobald, W. et al. Initial cone-in-shell fast-ignition experiments on OMEGA. Phys. Plasmas 18, 056305 (2011).

    Article  ADS  Google Scholar 

  32. 32

    Azechi, H. et al. Present status of fast ignition realization experiment and inertial fusion energy development. Nucl. Fusion 53, 104021 (2013).

    Article  ADS  Google Scholar 

  33. 33

    Nora, R. et al. Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett. 114, 045001 (2015).

    Article  ADS  Google Scholar 

  34. 34

    Gotchev, O. V. et al. Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. 103, 215004 (2009).

    Article  ADS  Google Scholar 

  35. 35

    Slutz, S. A. et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17, 56303 (2010).

    Article  Google Scholar 

  36. 36

    Gomez, M. R. et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Phys. Rev. Lett. 113, 155003 (2014).

    Article  ADS  Google Scholar 

  37. 37

    Lindl, J. D. et al. The Physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339–491 (2004).

    Article  ADS  Google Scholar 

  38. 38

    Haan, S. W. et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001 (2011).

    Article  ADS  Google Scholar 

  39. 39

    Lindl, J. et al. Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501 (2014); erratum 21, 129902 (2014).

    Article  ADS  Google Scholar 

  40. 40

    Clark, D. S. et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Phys. Plasmas 22, 022703 (2015).

    Article  ADS  Google Scholar 

  41. 41

    Stadermann, M. et al. Improvements to Formvar tent fabrication using the meniscus coater. Fusion Sci. Tech. 59, 58–62 (2011).

    Article  Google Scholar 

  42. 42

    Haan, S. W. et al. Instability growth seeded by oxygen in CH shells on the National Ignition Facility. Phys. Plasmas 22, 032708 (2015).

    Article  ADS  Google Scholar 

  43. 43

    Regan, S. P. et al. Hot-spot mix in ignition-scale implosions on the NIF. Phys. Plasmas 19, 056307 (2012).

    Article  ADS  Google Scholar 

  44. 44

    Jones, O. S. et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Phys. Plasmas 19, 056315 (2012).

    Article  ADS  Google Scholar 

  45. 45

    Edwards, M. J. et al. Progress towards ignition on the National Ignition Facility. Phys. Plasmas 20, 070501 (2013).

    Article  ADS  Google Scholar 

  46. 46

    Ma, T. et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett. 111, 085004 (2013).

    Article  ADS  Google Scholar 

  47. 47

    Town, R. P. J. et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility. Phys. Plasmas 21, 056313 (2014).

    Article  ADS  Google Scholar 

  48. 48

    Moody, J. D. et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments. Phys. Plasmas 21, 092702 (2014).

    Article  ADS  Google Scholar 

  49. 49

    Moody, J. D. et al. Progress in hohlraum physics for the National Ignition Facility. Phys. Plasmas 21, 056317 (2014).

    Article  ADS  Google Scholar 

  50. 50

    MacLaren, S. A. et al. Novel characterization of capsule X-ray drive at the National Ignition Facility. Phys. Rev. Lett. 112, 105003 (2014).

    Article  ADS  Google Scholar 

  51. 51

    Callahan, D. et al. Higher velocity, high-foot implosions on the National Ignition Facility laser. Phys. Plasmas 22, 056314 (2015).

    Article  ADS  Google Scholar 

  52. 52

    MacPhee, A. et al. Stabilization of high-compression indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive. Phys. Plasmas 22, 080702 (2015).

    Article  ADS  Google Scholar 

  53. 53

    Raman, K. S. et al. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility. Phys. Plasmas 21, 072710 (2014).

    Article  ADS  Google Scholar 

  54. 54

    Peterson, J. L. et al. Validating hydrodynamic growth in National Ignition Facility implosions. Phys. Plasmas 22, 056309 (2015).

    Article  ADS  Google Scholar 

  55. 55

    Smalyuk, V. A. et al. Hydrodynamic instability growth of three-dimensional, “native-roughness” modulations in X-ray driven, spherical implosions at the National Ignition Facility. Phys. Plasmas 22, 072704 (2015).

    Article  ADS  Google Scholar 

  56. 56

    Casey, D. T. et al. Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility. Phys. Rev. E 90, 011102(R) (2014).

    Article  ADS  Google Scholar 

  57. 57

    Dittrich, T. R. et al. Design of a high-foot/high-adiabat ICF capsule for the National Ignition Facility. Phys. Rev. Lett. 112, 055002 (2014).

    Article  ADS  Google Scholar 

  58. 58

    Peterson, J. L. et al. Differential ablator-fuel adiabat tuning in indirect-drive implosions. Phys. Rev. E 91, 031101(R) (2015).

    Article  ADS  Google Scholar 

  59. 59

    Park, H.-S. et al. High-adiabat, high-foot, inertial confinement fusion implosion experiments on the National Ignition Facility. Phys. Rev. Lett. 112, 055001 (2014).

    Article  ADS  Google Scholar 

  60. 60

    Hurricane, O. A. et al. The high-foot implosion campaign on the National Ignition Facility. Phys. Plasmas 21, 056314 (2014).

    Article  ADS  Google Scholar 

  61. 61

    Casey, D. et al. Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive. Phys. Rev. Lett. 115, 105001 (2015).

    Article  ADS  Google Scholar 

  62. 62

    Smalyuk, V. et al. First results of radiation-driven, layered deuterium–tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility. Phys. Plasmas 22, 080703 (2015).

    Article  ADS  Google Scholar 

  63. 63

    Mackinnon, A. J. et al. High-density carbon ablator experiments on the National Ignition Facility. Phys. Plasmas 21, 056318 (2014).

    Article  ADS  Google Scholar 

  64. 64

    Berzak Hopkins, L. F. et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett. 114, 175001 (2015).

    Article  ADS  Google Scholar 

  65. 65

    Meezan, N. B. et al. Cryogenic tritium–hydrogen–deuterium and deuterium–tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. Phys. Plasmas 22, 062703 (2015).

    Article  ADS  Google Scholar 

  66. 66

    Ross, J. S. et al. High-density carbon capsule experiments on the National Ignition Facility. Phys. Rev. E 91, 021101(R) (2015).

    Article  ADS  Google Scholar 

  67. 67

    Ma, T. et al. Thin-shell high-velocity ICF implosions on the National Ignition Facility. Phys. Rev. Lett. 114, 145004 (2015).

    Article  ADS  Google Scholar 

  68. 68

    Michel, P. et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102, 025004 (2009).

    Article  ADS  Google Scholar 

  69. 69

    Michel, P. et al. Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility. Phys. Plasmas 17, 056305 (2010).

    Article  ADS  Google Scholar 

  70. 70

    Moody, J. D. et al. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nature Phys. 8, 344–349 (2012).

    Article  ADS  Google Scholar 

  71. 71

    Callahan, D. A. et al. The velocity campaign for ignition on NIF. Phys. Plasmas 19, 056305 (2012).

    Article  ADS  Google Scholar 

  72. 72

    Kritcher, A. et al. Integrated modeling of cryogenic layered high-foot experiments at the NIF. Phys. Plasmas (submitted, 2016).

  73. 73

    Clark, D. S. et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Phys. Plasmas 23, 056302 (2016).

    Article  ADS  Google Scholar 

  74. 74

    Nagel, S. R. et al. Effect of the mounting membrane on shape in inertial confinement fusion implosions. Phys. Plasmas 22, 022704 (2015).

    Article  ADS  Google Scholar 

  75. 75

    Tommasini, R. et al. Tent-induced perturbations on areal density of implosions at the National Ignition Facility. Phys. Plasmas 22, 056315 (2015).

    Article  ADS  Google Scholar 

  76. 76

    Regan, S. P. et al. Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled hohlraums. Phys. Plasmas 17, 020703 (2010).

    Article  ADS  Google Scholar 

  77. 77

    Kritcher, A. L. et al. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility. Phys. Plasmas 21, 042708 (2014).

    Article  ADS  Google Scholar 

  78. 78

    Spears, B. K. et al. Three-dimensional simulations of National Ignition Facility implosions: insight into experimental observables. Phys. Plasmas 22, 056317 (2015).

    Article  ADS  Google Scholar 

  79. 79

    Zylstra, A. B. et al. In-flight observations of low-mode ρR asymmetries in NIF implosions. Phys. Plasmas 22, 056301 (2015).

    Article  ADS  Google Scholar 

  80. 80

    Pak, A. et al. Laser absorbtion, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments. Phys. Plasmas 22, 122701 (2015).

    Article  ADS  Google Scholar 

  81. 81

    Simakov, A. et al. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility. Phys. Plasmas 21, 022701 (2014).

    Article  ADS  Google Scholar 

  82. 82

    Yi, S. A. et al. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility. Phys. Plasmas 21, 092701 (2014).

    Article  ADS  Google Scholar 

  83. 83

    Clark, D. S. et al. A survey of pulse shape options for a revised plastic ablator ignition design. Phys. Plasmas 21, 112705 (2014).

    Article  Google Scholar 

  84. 84

    Baker, K. et al. Adiabat-shaping in indirect drive inertial confinement fusion. Phys. Plasmas 22, 052702 (2015).

    Article  ADS  Google Scholar 

  85. 85

    Milovich, J. et al. Design of indirectly driven, high-compression Inertial Confinement Fusion Implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive. Phys. Plasmas 22, 122702 (2015).

    Article  ADS  Google Scholar 

  86. 86

    Robey, H. et al. Performance of indirectly driven capsule implosions on NIF using adiabat-shaping. Phys. Plasmas 23, 056303 (2016).

    Article  ADS  Google Scholar 

  87. 87

    Hinkel, D. E. et al. Improved hohlraums for high foot implosions. in 57th Ann. Meet. APS Div. Plasma Phys. BO4.00004 (American Physical Society, 2015); http://meetings.aps.org/link/BAPS.2015.DPP.BO4.4

    Google Scholar 

  88. 88

    Leidinger, J.-P. et al. NIF Rugby High Foot Campaign from the design side.  in Proc. 9th Int. Conf. Inertial Fusion Sci. Appl. J. Phys. Conf. Ser. Paper 174 (in the press).

  89. 89

    Hohenberger, M. et al. Polar-direct-drive experiments on the National Ignition Facility. Phys. Plasmas 22, 056308 (2015).

    Article  ADS  Google Scholar 

  90. 90

    Radha, P. B. et al. Polar direct drive—simulations and results from OMEGA and the National Ignition Facility. in 57th Ann. Meet. Div. Plasma Phys. CI3.00004 (American Physical Society, 2015).

    Google Scholar 

  91. 91

    Rosenberg, M. J. et al. Planar two-plasmon–decay experiments at polar-direct-drive ignition-relevant scale lengths at the National Ignition Facility. in 57th Ann. Meet. Div. Plasma Phys. NO5.00006 (American Physical Society, 2015).

    Google Scholar 

  92. 92

    Stoeckl, C. et al. First results from cryogenic target implosions on OMEGA. Phys. Plasmas 9, 2195–2201 (2002).

    Article  ADS  Google Scholar 

  93. 93

    Sangster, T. C. et al. Improving cryogenic deuterium–tritium implosion performance on OMEGA. Phys. Plasmas 20, 056317 (2013).

    Article  ADS  Google Scholar 

  94. 94

    Goncharov, V. N. et al. Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket. Phys. Plasmas 10, 1906–1918 (2003).

    Article  ADS  Google Scholar 

  95. 95

    Anderson, K. et al. Laser-induced adiabat shaping by relaxation in inertial fusion implosions. Phys. Plasmas 11, 5–8 (2004).

    Article  ADS  Google Scholar 

  96. 96

    Goncharov, V. N. et al. Demonstration of the highest deuterium–tritium areal density using multiple-picket cryogenic designs on omega. Phys. Rev. Lett. 104, 165001 (2010).

    Article  ADS  Google Scholar 

  97. 97

    Takabe, H. et al. Selfconsistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids 28, 3676–3682 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. 98

    Nora, R. et al. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility. Phys. Plasmas 21, 056316 (2014).

    Article  ADS  Google Scholar 

  99. 99

    Stoeckl, C. et al. Ten-inch manipulator-based neutron temporal diagnostic for cryogenic experiments on OMEGA. Rev. Sci. Instrum. 74, 1713–1716 (2003).

    Article  ADS  Google Scholar 

  100. 100

    Seka, W. et al. Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments. Phys. Plasmas 16, 052701 (2009).

    Article  ADS  Google Scholar 

  101. 101

    Simon, A. et al. On the inhomogeneous two-plasmon instability. Phys. Fluids 26, 3107–3118 (1983).

    Article  ADS  MATH  Google Scholar 

  102. 102

    Skupsky, S. et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66, 3456–3462 (1989).

    Article  ADS  Google Scholar 

  103. 103

    Lehmberg, R. H. & Obenschain, S. P. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 27–31 (1983).

    Article  ADS  Google Scholar 

  104. 104

    Regan, S. P. et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams. J. Opt. Soc. Am. B 22, 998–1002 (2005).

    Article  ADS  Google Scholar 

  105. 105

    Collins, T. J. B. et al. A polar-drive ignition design for the National Ignition Facility. Phys. Plasmas 19, 056308 (2012).

    Article  ADS  Google Scholar 

  106. 106

    Igumenshchev, I. V. et al. Crossed-beam energy transfer in implosion experiments on OMEGA. Phys. Plasmas 17, 122708 (2010).

    Article  ADS  Google Scholar 

  107. 107

    Igumenshchev, I. V. et al. Crossed-beam energy transfer in direct-drive implosions. Phys. Plasmas 19, 056314 (2012).

    Article  ADS  Google Scholar 

  108. 108

    Goncharov, V. et al. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Phys. Plasmas 21, 056315 (2014).

    Article  ADS  Google Scholar 

  109. 109

    Froula, D. H. et al. Mitigation of cross-beam energy transfer: implication of two-state focal zooming on OMEGA. Phys. Plasmas 20, 082704 (2013).

    Article  ADS  Google Scholar 

  110. 110

    Hu, S. et al. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-z dopants. Phys. Rev. Lett. 108, 195003 (2012).

    Article  ADS  Google Scholar 

  111. 111

    Karasik, M. et al. Suppression of laser nonuniformity imprinting using a thin high-z coating. Phys. Rev. Lett. 114, 085001 (2015).

    Article  ADS  Google Scholar 

  112. 112

    Smalyuk, V. A. et al. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. Phys. Rev. Lett. 100, 185005 (2008).

    Article  ADS  Google Scholar 

  113. 113

    Sangster, T. C. et al. High-areal-density fuel assembly in direct-drive cryogenic implosions. Phys. Rev. Lett. 100, 185006 (2008).

    Article  ADS  Google Scholar 

  114. 114

    Seka, W. et al. Nonuniformly driven two-plasmon-decay instability in direct-drive implosions. Phys. Rev. Lett. 112, 145001 (2014).

    Article  ADS  Google Scholar 

  115. 115

    Follett, R. K. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering. Phys. Rev. E 91, 031104(R) (2015).

    Article  ADS  Google Scholar 

  116. 116

    Michel, D. T. et al. Experimental validation of the two-plasmon-decay common-wave process. Phys. Rev. Lett. 109, 155007 (2012).

    Article  ADS  Google Scholar 

  117. 117

    Froula, D. H. et al. Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. Phys. Rev. Lett. 108, 165003 (2012).

    Article  ADS  Google Scholar 

  118. 118

    Yan, R. et al. Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion. Phys. Rev. Lett. 108, 175002 (2012).

    Article  ADS  Google Scholar 

  119. 119

    Zhang, J. et al. Multiple beam two-plasmon decay: linear threshold to nonlinear saturation in three dimensions. Phys. Rev. Lett. 113, 105001 (2014).

    Article  ADS  Google Scholar 

  120. 120

    Myatt, J. F. et al. Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping. Phys. Plasmas 20, 052705 (2013).

    Article  ADS  Google Scholar 

  121. 121

    Smalyuk, V. et al. Implosion experiments using glass ablators for direct-drive inertial confinement fusion. Phys. Rev. Lett. 104, 165002 (2010).

    Article  ADS  Google Scholar 

  122. 122

    Froula, D. H. et al. Laser–plasma interactions in direct-drive ignition plasmas. Plasma Phys. Control. Fusion 54, 124016 (2012).

    Article  ADS  Google Scholar 

  123. 123

    Lafon, M. et al. Direct-drive ignition designs with mid-Z ablators. Phys. Plasmas 22, 032703 (2015).

    Article  ADS  Google Scholar 

  124. 124

    Betti, R. & Zhou, C. D. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion. Phys. Plasmas 12, 110702 (2005).

    Article  ADS  Google Scholar 

  125. 125

    Key, M. H. Status of and prospects for the fast ignition inertial fusion concept. Phys. Plasmas 14, 055502 (2007).

    Article  ADS  Google Scholar 

  126. 126

    Craxton, R. S. et al. Direct-drive inertial confinement fusion: a review. Phys. Plasmas 22, 110501 (2015).

    Article  ADS  Google Scholar 

  127. 127

    Kodama, R. et al. Nuclear fusion: fast heating scalable to laser fusion ignition. Nature 418, 933–934 (2002).

    Article  ADS  Google Scholar 

  128. 128

    Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

    Article  ADS  Google Scholar 

  129. 129

    Atzeni, S. Inertial fusion fast ignitor: igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 3316–3326 (1999).

    Article  ADS  Google Scholar 

  130. 130

    Stoeckl, C. et al. Hydrodynamics studies of direct-drive cone-in-shell, fast-ignitor targets on OMEGA. Phys. Plasmas 14, 112702 (2007).

    Article  ADS  Google Scholar 

  131. 131

    Green, J. S. et al. Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003 (2008).

    Article  ADS  Google Scholar 

  132. 132

    Jarrott, L. C. et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets. Nature Phys. http://dx.doi.org/10.1038/nphys3614 (2016).

  133. 133

    Strozzi, D. et al. Fast-ignition transport studies: realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas 19, 072711 (2012).

    Article  ADS  Google Scholar 

  134. 134

    Robinson, A. et al. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard. Phys. Rev. Lett. 108, 125004 (2012).

    Article  ADS  Google Scholar 

  135. 135

    Bellei, C. et al. Fast ignition: dependence of the ignition energy on source and target parameters for particle-in-cell-modelled energy and angular distributions of the fast electrons. Phys. Plasmas 20, 052704 (2013).

    Article  ADS  Google Scholar 

  136. 136

    Shcherbakov, V. A. Ignition of a laser-fusion target by a focusing shock wave. Sov. J. Plasma Phys. 9, 240–241 (1983).

    Google Scholar 

  137. 137

    Atzeni, S. et al. Shock ignition of thermonuclear fuel: principles and modelling. Nucl. Fusion 54, 054008 (2014).

    Article  ADS  Google Scholar 

  138. 138

    Batani, D. et al. Physics issues for shock ignition. Nucl. Fusion 54, 054009 (2014).

    Article  ADS  Google Scholar 

  139. 139

    Perkins, L. J. et al. Shock Ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility. Phys. Rev. Lett. 103, 045004 (2009).

    Article  ADS  Google Scholar 

  140. 140

    Schmitt, A. J. et al. Shock ignition target design for inertial fusion energy. Phys. Plasmas 17, 042701 (2010).

    Article  ADS  Google Scholar 

  141. 141

    Ribeyre, X. et al. Shock ignition: an alternative scheme for HiPER. Plasma Phys. Control. Fusion 51, 015013 (2009).

    Article  ADS  Google Scholar 

  142. 142

    Lafon, M. et al. Gain curves and hydrodynamic modeling for shock ignition. Phys. Plasmas 17, 052704 (2010).

    Article  ADS  Google Scholar 

  143. 143

    Atzeni, S. et al. Energy and wavelength scaling of shock-ignited inertial fusion targets. New J. Phys. 15, 045004 (2013).

    Article  ADS  Google Scholar 

  144. 144

    Ribeyre, X. et al. Shock ignition: modelling and target design robustness. Plasma Phys. Control. Fusion 51, 124030 (2009).

    Article  ADS  Google Scholar 

  145. 145

    Theobald, W. et al. Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306 (2008).

    Article  ADS  Google Scholar 

  146. 146

    Baton, S. D. et al. Experiment in planar geometry for shock ignition studies. Phys. Rev. Lett. 108, 195002 (2012).

    Article  ADS  Google Scholar 

  147. 147

    Hohenberger, M. et al. Shock-ignition relevant experiments with planar targets on OMEGA. Phys. Plasmas 21, 022702 (2014).

    Article  ADS  Google Scholar 

  148. 148

    Batani, D. et al. Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710 (2014).

    Article  ADS  Google Scholar 

  149. 149

    Theobald, W. et al. Spherical strong-shock generation for shock-ignition inertial fusion. Phys. Plasmas 22, 056310 (2015).

    Article  ADS  Google Scholar 

  150. 150

    Theobald, W. et al. Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA. Phys. Plasmas 19, 102706 (2012).

    Article  ADS  Google Scholar 

  151. 151

    Betti, R. et al. Shock ignition of thermonuclear fuel with high areal densities. J. Phys. Conf. Ser. 112, 022024 (2008).

    Article  Google Scholar 

  152. 152

    Piriz, A. R. et al. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition. Phys. Plasmas 19, 122705 (2012).

    Article  ADS  Google Scholar 

  153. 153

    Gus’kov, S. et al. Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett. 109, 255004 (2012).

    Article  ADS  Google Scholar 

  154. 154

    Klimo, O., Weber, S., Tikhonchuk, V. T. & Limpouch, J. Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario. Plasma Phys. Control. Fusion 52, 055013 (2010).

    Article  ADS  Google Scholar 

  155. 155

    Yan, R. et al. Intermittent laser–plasma interactions and hot electron generation in shock ignition. Phys. Plasmas 21, 062705 (2014).

    Article  ADS  Google Scholar 

  156. 156

    Klimo, O. et al. Laser plasma interaction studies in the context of shock ignition—transition from collisional to collisionless absorption. Phys. Plasmas 18, 082709 (2011).

    Article  ADS  Google Scholar 

  157. 157

    Weber, S. et al. Fast saturation of the two-plasmon-decay instability for shock-ignition conditions. Phys. Rev. E 85, 016403 (2012).

    Article  ADS  Google Scholar 

  158. 158

    Nicolai, Ph. et al. Deleterious effects of nonthermal electrons in shock ignition concept. Phys. Rev. E 89, 033107 (2014).

    Article  ADS  Google Scholar 

  159. 159

    Tikhonchuck, V. et al. Multiscale models of laser–plasma interaction for the shock ignition scheme. in 9th Inertial Fusion Sic. Appl. Conf. (2015).

  160. 160

    Gotchev, O. V. et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas. Rev. Sci. Instrum. 80, 043504 (2009); Fiksel, G. et al. Note: experimental platform for magnetized high-energy-density plasma studies at the OMEGA laser facility. Rev. Sci. Instrum. 86 016105 (2015).

    Article  ADS  Google Scholar 

  161. 161

    Chang, P. Y. et al. Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. 107, 035006 (2011).

    Article  ADS  Google Scholar 

  162. 162

    Hohenberger, M. et al. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser. Phys. Plasmas 19, 056306 (2012).

    Article  ADS  Google Scholar 

  163. 163

    Davies, J. C., Betti, R., Chang, P. Y. & Fiksel, G. The importance of electrothermal terms in Ohm’s law for magnetized spherical implosions. Phys. Plasmas 22, 112703 (2015).

    Article  ADS  Google Scholar 

  164. 164

    Perkins, L. J., Logan, B. G., Zimmerman, G. B. & Werner, C. J. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20, 072708 (2013).

    Article  ADS  Google Scholar 

  165. 165

    Montgomery, D. S. et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22, 010703 (2015); erratum 22, 079901 (2015).

    Article  ADS  Google Scholar 

  166. 166

    Basko, M. M., Kemp, A. J. & Meyer-ter-Vehn, J. Ignition conditions for magnetized target fusion in cylindrical geometry. Nucl. Fusion 40, 59–68 (2000).

    Article  ADS  Google Scholar 

  167. 167

    Sefkow, A. B. et al. Design of magnetized liner inertial fusion experiments using the Z facility. Phys. Plasmas 21, 072711 (2014).

    Article  ADS  Google Scholar 

  168. 168

    Slutz, S. A. & Vesey, R. A. High-gain magnetized inertial fusion. Phys. Rev. Lett. 108, 025003 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the US and the international ICF community for their continuing efforts to make inertial fusion in the laboratory a reality. Special thanks to J. R. Davies of LLE for his input on the Magneto-Inertial Fusion section of this manuscript. The authors are grateful to M. E. Campbell, S. P. Regan, T. C. Sangster and W. Theobald of LLE, F. Beg of UCSD, D. Sinar of SNL and to D. Clark, M. J. Edwards, L. F. Berzak-Hopkins, A. Kritcher and T. Ma of LLNL for reviewing this manuscript. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the University of Rochester Laboratory for Laser Energetics under Cooperative Agreements DE-NA0001944 (NNSA) and DE-FC02-04ER54789 (OFES), and with the support of the New York State Energy Research Development Authority.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Betti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Betti, R., Hurricane, O. Inertial-confinement fusion with lasers. Nature Phys 12, 435–448 (2016). https://doi.org/10.1038/nphys3736

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing