Materials research for fusion


Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium–tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustration of irradiation damage.
Figure 2: Evolution of a typical morphology cascade in pure iron triggered by a 20 keV fission and a 200 keV fusion neutron calculated by means of molecular dynamics.
Figure 3: Correlation between irradiation effect evolution and computational materials science methods.
Figure 4: Graph showing the correlation of dpaNRT versus appm of He generated for the different possibilities of testing materials (alternative and IFMIF) compared with fusion reactor conditions.
Figure 5: Schematic of the International Fusion Materials Irradiation Facility with its two deuteron accelerators of 125 mA in continuous-wave mode at 40 MeV impacting with a beam footprint of 200 mm × 50 mm on a 15 m s−1 lithium flow at 250 °C.
Figure 6: World’s largest lithium test loop.


  1. 1

    Eddington, A. The internal constitution of the stars. Observatory 43, 341–358 (1920).

    ADS  Google Scholar 

  2. 2

    Lawson, J. D. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6–10 (1957).

    Article  ADS  Google Scholar 

  3. 3

    Wigner, E. P. Theoretical physics in the metallurgical laboratory of Chicago. J. Appl. Phys. 17, 857–863 (1946).

    Article  ADS  Google Scholar 

  4. 4

    Robinson, M. T. Basics physics of radiation damage production. J. Nucl. Mater. 216, 1–28 (1994).

    Article  ADS  Google Scholar 

  5. 5

    Zinkle, S. J. Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 3, 65–98 (Elsevier, 2012).

    Google Scholar 

  6. 6

    Nordlund, K. et al. Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate In-cascade Mixing and Defect Production Efficiency Effects (OECD Nuclear Energy Agency, 2015).

  7. 7

    Greenwood, L. R. Neutron interactions and atomic recoil spectra. J. Nucl. Mater. 216, 29–44 (1994).

    Article  ADS  Google Scholar 

  8. 8

    Noda, T. et al. Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors. J. Nucl. Mater. 258–263, 934–939 (1998).

    Article  ADS  Google Scholar 

  9. 9

    Tanno, T. et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten. J. Nucl. Mater. 386–388, 218–221 (2009).

    Article  ADS  Google Scholar 

  10. 10

    Fischer, U. et al. Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors. J. Nucl. Mater. 329–333, 228–232 (2004).

    Article  ADS  Google Scholar 

  11. 11

    Kiritani, M. Defect structure evolution from radiation damage with D-T fusion neutrons. J. Nucl. Mater. 133, 134, 85–91 (1985).

    Article  Google Scholar 

  12. 12

    Mansur, L. et al. Mechanical properties changes induced in structural alloys by neutron irradiations with different helium to displacement ratios. J. Nucl. Mater. 155–157, 130–147 (1988).

    Article  ADS  Google Scholar 

  13. 13

    Sigmund, P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969).

    Article  ADS  Google Scholar 

  14. 14

    Stoeklin, G. Chemie Heisser Atome (Verlag Chemie, 1969).

    Google Scholar 

  15. 15

    Parkin, D. M. & Coulter, C. A. Displacement cascades in polyatomic materials. J. Nucl. Mater. 117, 340–344 (1983).

    Article  ADS  Google Scholar 

  16. 16

    Muroga, T. et al. The effect of recoil energy spectrum on cascades structure defect production efficiencies. J. Nucl. Mater. 133, 134, 378–382 (1985).

    Article  Google Scholar 

  17. 17

    Lindhard, J. & Winther, A. Stopping power of electron gas and equipartition rule. Mat. Fys. Med. Dan. Vid. Selsk. 34, 4 (1964).

    Google Scholar 

  18. 18

    Bethe, H. A. Bremsformel für Elektronen relativistischer Geschwindigkeit. Z. Phys. 76, 293–299 (1932).

    ADS  MATH  Google Scholar 

  19. 19

    Fermi, E. The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485–493 (1940).

    Article  ADS  Google Scholar 

  20. 20

    Bohr, N. Scattering and stopping of fission fragments. Phys. Rev. 58, 654–655 (1940).

    Article  ADS  MATH  Google Scholar 

  21. 21

    Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids (eds Ziegler, J. F., Biersack, J. P. & Littmark, U.) (The Stopping and Range of Ions in Matter Vol. 1, Pergamon, 1985).

    Google Scholar 

  22. 22

    Ziegler, J. F. SRIM-code. (2013);

  23. 23

    Cawthorne, C. & Fulton, E. J. Voids in irradiated stainless steel. Nature 216, 575–576 (1967).

    Article  ADS  Google Scholar 

  24. 24

    Kinchin, G. H. & Pease, R. S. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1–51 (1955).

    Article  ADS  Google Scholar 

  25. 25

    Frenkel, J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938).

    Article  ADS  Google Scholar 

  26. 26

    Norgett, M. I., Robinson, M. T. & Torrens, I. M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975).

    Article  Google Scholar 

  27. 27

    ASTM E693 Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA) (ASTM International).

  28. 28

    Odette, G. R. Modelling of microstructural evolution under irradiation. J. Nucl. Mater. 85–86, 533–545 (1979).

    Article  ADS  Google Scholar 

  29. 29

    Zinkle, S. & Moeslang, A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Eng. Des. 88, 472–482 (2013).

    Article  Google Scholar 

  30. 30

    Ehrlich, K., Bloom, E. E. & Kondo, T. International strategy for fusion materials development. J. Nucl. Mater. 283–287, 79–88 (2000).

    Article  ADS  Google Scholar 

  31. 31

    Zinkle, S. J. & Snead, L. L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241–267 (2014).

    Article  ADS  Google Scholar 

  32. 32

    Odette, G. R. & Frey, D. Development of mechanical property correlation methodology for fusion environments. J. Nucl. Mater. 85–86, 617–822 (1979).

    Google Scholar 

  33. 33

    Kiritani, M. Fission-fusion correlation by fission reactor irradiation with improved control. J. Nucl. Mater. 174, 327–351 (1990).

    Article  ADS  Google Scholar 

  34. 34

    Was, G. S. Materials degradation in fission reactors: lessons learned of relevance to fusion reactor systems. J. Nucl. Mater. 367–370, 11–20 (2007).

    Article  ADS  Google Scholar 

  35. 35

    Kiritani, M. The need for improved temperature control during reactor irradiation. J. Nucl. Mater. 160, 135–141 (1988).

    Article  ADS  Google Scholar 

  36. 36

    Moeslang, A., Adelhelm, C. & Heidinger, R. Innovative materials for energy technology. Int. J. Mater. Res. 99, 1045–1054 (2008).

    Article  Google Scholar 

  37. 37

    Zinkle, S. Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005).

    Article  ADS  Google Scholar 

  38. 38

    Wong, C. P. C. et al. Overview of liquid metal TBM concepts and programs. Fusion Eng. Des. 83, 850–857 (2008).

    Article  Google Scholar 

  39. 39

    Tavassoli, A. et al. Current status and recent research achievements in ferritic/martensitic steels. J. Nucl. Mater. 455, 296–276 (2014).

    Article  Google Scholar 

  40. 40

    Wurster, S. et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J. Nucl. Mater. 442, S181–S189 (2013).

    Article  Google Scholar 

  41. 41

    Knitter, R. Recent developments of solid breeder fabrication. J. Nucl. Mater. 442, S420–S424 (2013).

    Article  Google Scholar 

  42. 42

    Weber, H. Radiation effects on superconducting fusion magnet components. Int. J. Mod. Phys. E 20, 1325–1378 (2011).

    Article  ADS  Google Scholar 

  43. 43

    Humer, K. et al. Characterization and qualification of advanced insulators for fusion magnets. Fusion Eng. Des. 88, 350–360 (2013).

    Article  Google Scholar 

  44. 44

    Heidinger, R., Rohde, M. & Spörl, R. Neutron irradiation studies on window materials for EC wave system. Fusion Eng. Des. 56–57, 471–476 (2001).

    Article  Google Scholar 

  45. 45

    Wirth, B. D. et al. Modelling defect cluster evolution in irradiated structural materials: focus on comparing to high-resolution experimental characterization studies. J. Mater. Res. 30, 1440–1455 (2015).

    Article  ADS  Google Scholar 

  46. 46

    Wirth, B. D. et al. Fusion materials modelling: challenges and opportunities. Mater. Res. Soc. 36, 216–222 (2011).

    Article  Google Scholar 

  47. 47

    Crocombette, J.-P. & Willaime, F. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 8, 223–248 (Elsevier, 2012).

    Google Scholar 

  48. 48

    Marinica, M.-C. et al. Irradiation-induced formation of nanocrystallites with C15 laves phase structure in bcc iron. Phys. Rev. Lett. 108, 025501 (2012).

    Article  ADS  Google Scholar 

  49. 49

    Bachurin, D. V. et al. Ab initio study of hydrogen on beryllium surfaces. Surf. Sci. 641, 198–203 (2015).

    Article  ADS  Google Scholar 

  50. 50

    Nguyen-Manh, D. & Dudarev, S. L. Trapping of He clusters by inert-gas impurities in tungsten: first-principles predictions and experimental validation. Nucl. Instrum. Methods Phys. Res. B 352, 86–91 (2015).

    Article  ADS  Google Scholar 

  51. 51

    Cai, W., Li, J. & Yip, S. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 9, 249–265 (Elsevier, 2012).

    Google Scholar 

  52. 52

    Sand, A. E. et al. High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws. Europhys. Lett. 103, 46003 (2013).

    Article  ADS  Google Scholar 

  53. 53

    Stoller, R. E. The role of cascade energy and temperature in primary defect formation in iron. J. Nucl. Mater. 276, 22–32 (2000).

    Article  ADS  Google Scholar 

  54. 54

    Becquart, C. S. & Wirth, B. D. Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 14, 393–410 (Elsevier, 2012).

    Google Scholar 

  55. 55

    Souidi, A. et al. On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419, 122–133 (2011).

    Article  ADS  Google Scholar 

  56. 56

    Ghoniem, N. M. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 16, 433–453 (Elsevier, 2012).

    Google Scholar 

  57. 57

    Arsenlis, A. et al. A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater. 60, 3748–3757 (2012).

    Article  Google Scholar 

  58. 58

    Stoller, R. E. et al. Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J. Nucl. Mater. 382, 77–90 (2008).

    Article  ADS  Google Scholar 

  59. 59

    Besmann, T. M. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 17, 455–470 (Elsevier, 2012).

    Google Scholar 

  60. 60

    Franke, P. & Seifert, H. J. The influence of magnetic and chemical ordering on the phase diagram of Cr–Fe–Ni. Calphad 35, 148–154 (2011).

    Article  Google Scholar 

  61. 61

    Bellon, P. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 15, 411–432 (Elsevier, 2012).

    Google Scholar 

  62. 62


  63. 63

    Giancarli, L. et al. Test blanket modules in ITER: an overview on proposed designs and required DEMO-relevant materials. J. Nucl. Mater. 367–370, 1271–1280 (2007).

    Article  ADS  Google Scholar 

  64. 64

    Ehrlich, K. et al. in 17th Int. Symp. Effects of Radiation on Materials Vol. 1270 (eds Gelles, D. S., Nanstad, R. K., Kumar, A. S. & Little, E. A.) 1109–1112 (ASTM STP, 1996).

    Google Scholar 

  65. 65

    Gilbert, M. R. & Forrest, R. A. Handbook of Activation Data Calculated Using EASY-2003 Report UKAEA FUS 509 (UKAEA, July 2004).

  66. 66

    Katoh, Y. et al. Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387–397 (2014).

    Article  ADS  Google Scholar 

  67. 67

    Muroga, T. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 455, 263–268 (2014).

    Article  ADS  Google Scholar 

  68. 68

    El-Guebaly, L., Malang, S., Rowcliffe, A. & Waganer, L. Blanket/materials testing strategy for FNSF and its breeding potential. Fusion Sci. Technol. 68, 251–258 (2015).

    Article  Google Scholar 

  69. 69

    Odette, G. R. et al. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Article  ADS  Google Scholar 

  70. 70

    Gilbert, M. R. et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater. 442, S755–S760 (2013).

    Article  Google Scholar 

  71. 71

    Odette, G. R. On the ductile to brittle transition in martensitic stainless steels—mechanisms, models and structural implications. J. Nucl. Mater. 212–215, 45–51 (1994).

    Article  ADS  Google Scholar 

  72. 72

    Fletcher, R. C. & Brown, W. L. Annealing of bombardment damage in a diamond-type lattice: theoretical. Phys. Rev. 92, 585–590 (1953).

    Article  ADS  Google Scholar 

  73. 73

    Gaganidze, E. et al. Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60. J. Nucl. Mater. 417, 93–98 (2011).

    Article  ADS  Google Scholar 

  74. 74

    Materna-Morris, E. et al. Effect of helium on tensile properties and microstructure in 9%Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450 °C. J. Nucl. Mater. 386–388, 422–425 (2009).

    Article  ADS  Google Scholar 

  75. 75

    Stork, D. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J. Nucl. Mater. 455, 277–291 (2014).

    Article  ADS  Google Scholar 

  76. 76

    Knaster, J. et al. IFMIF, a fusion relevant neutron source for material irradiation current status. J. Nucl. Mater. 453, 115–119 (2014).

    Article  ADS  Google Scholar 

  77. 77

    Vladimirov, P. & Möslang, A. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources. J. Nucl. Mater. 343, 205–211 (2005).

    Article  ADS  Google Scholar 

  78. 78

    Grand, P. et al. An intense Li(d, n) neutron radiation test facility for controlled thermonuclear reactor materials testing. Nucl. Technol. 29, 327–336 (1976).

    Article  Google Scholar 

  79. 79

    Trego, A. L., Hagan, J. W., Opperman, E. K. & Burke, R. J. Fusion materials irradiation test facility—a facility for fusion materials qualification. Fusion Sci. Technol. 4, 695–700 (1983).

    Article  Google Scholar 

  80. 80

    Surrey, E. et al. FAFNIR: strategy and risk reduction in accelerator driven neutron sources for fusion materials irradiation data. Fusion Eng. Des. 89, 2108–2113 (2014).

    Article  Google Scholar 

  81. 81

    Yamanishi, T. et al. Recent technical progress on BA Program: DEMO activities and IFMIF/EVEDA. Fusion Eng. Des. (2016).

  82. 82

    Abdou, M. A. A volumetric neutron source for fusion nuclear technology testing and development. Fusion Eng. Des. 27, 111–153 (1995).

    Article  Google Scholar 

  83. 83

    Vos, G. M. et al. Conceptual design of a component test facility based on the spherical tokamak. Fusion Eng. Des. 83, 1648–1653 (2008).

    Article  Google Scholar 

  84. 84

    Peng, Y. K. M. et al. Fusion Nuclear Science Facility (FNSF) before upgrade to Component Test Facility (CTF). Fusion Sci. Technol. 60, 441–448 (2011).

    Article  Google Scholar 

  85. 85

    Gilbert, M. R. & Sublet, J.-Ch. Neutron-induced transmutation effects in W and W-alloys in a fusion environment. Nucl. Fusion 51, 043005 (2011).

    Article  ADS  Google Scholar 

  86. 86

    Li, M. et al. Sweeping heat flux loads on divertor targets: thermal benefits and structural impacts. Fusion Eng. Des. 102, 50–58 (2016).

    Article  Google Scholar 

  87. 87

    Pintsuk, G. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 17, 551–581 (Elsevier, 2012).

    Google Scholar 

  88. 88

    Snead, L. & Ferraris, M. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 18, 583–620 (Elsevier, 2012).

    Google Scholar 

  89. 89

    Federici, G. et al. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 19, 621–666 (Elsevier, 2012).

    Google Scholar 

  90. 90

    Smid, I. et al. Development of tungsten armor and bonding to copper for plasma-interactive components. J. Nucl. Mater. 258–263, 160–172 (1998).

    Article  ADS  Google Scholar 

  91. 91

    Rieth, M. et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432, 482–500 (2013).

    Article  ADS  Google Scholar 

  92. 92

    Leonard, K. J. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 6, 181–213 (Elsevier, 2012).

    Google Scholar 

  93. 93

    Stork, D. et al. Materials R&D for a timely DEMO: key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des. 89, 1586–1594 (2014).

    Article  Google Scholar 

  94. 94

    Roedig, M. et al. Investigation of tungsten alloys as plasma facing materials for the ITER divertor. Fusion Eng. Des. 61–62, 135–140 (2002).

    Article  Google Scholar 

  95. 95

    Shimakawa, S. et al. New electron beam facility for irradiated plasma facing materials testing in hot cell. J. Nucl. Mater. 233–237, 1582–1585 (1996).

    Article  ADS  Google Scholar 

  96. 96

    Roedig, M. et al. Comparison of electron beam test facilities for testing of high heat flux components. Fusion Eng. Des. 51–52, 715–722 (2000).

    Article  Google Scholar 

  97. 97

    Akiba, M. et al. Performance of JAERI electron beam irradiation stand. Plasma Dev. Oper. 1, 205–212 (1991).

    Article  Google Scholar 

  98. 98

    Tokunaga, K. et al. High-heat-flux experiment on plasma-facing materials by electron beam irradiation. J. Nucl. Mater. 212–215, 1323–1328 (1994).

    Article  ADS  Google Scholar 

  99. 99

    Diotalevi, M., Febvre, M. & Chappuis, P. Evolution of framatome and CEA high thermal flux station for fusion technology experiments needs. in Fusion Technology 1996 (eds Varandas, C. & Serra, F.) 491–494 (North-Holland, 1997).

    Google Scholar 

  100. 100

    Wu, J. H. et al. Research of high heat flux for divertor materials. Chin. J. Nucl. Sci. Eng. 23, 132–138 (2003).

    Google Scholar 

  101. 101

    Gervash, A. et al. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints. Fusion Eng. Des. 39–40, 543–549 (1998).

    Article  Google Scholar 

  102. 102

    Youchison, D. L., McDonald, J. M. & Wold, L. S. in Heat Transfer in High Heat Flux Systems Book No. G00956 (eds Boyd, R. D. & Ghajar, A. J.) (ASME, 1994).

    Google Scholar 

  103. 103

    Hofmann, G. & Eggert, E. The First Wall Test Facility FIWATKA—Description of the Facility and Report on Commissioning Tests Report KfK 5381 (KIT publications, 1994).

  104. 104

    Dell’Orco, G. et al. Thermal–mechanical test on ITER primary first wall mock-ups. Fusion Eng. Des. 61–62, 117–122 (2002).

    Article  Google Scholar 

  105. 105

    Hirai, T., Ezato, K. & Majerus, P. ITER relevant high heat flux testing on plasma facing surfaces. Mater. Trans. 46, 412–424 (2005).

    Article  Google Scholar 

  106. 106

    Bucalossi, J. et al. The WEST project: testing ITER divertor high heat flux component technology in a steady state tokamak environment. Fusion Eng. Des. 89, 907–912 (2014).

    Article  Google Scholar 

  107. 107

    Bloom, E. E., Stiegler, J. O. & Wiffen, F. W. Alloy development for irradiation performance. In Proc. 3rd Topical Meeting Technology of Controlled Nuclear Fusion CONF-780808 (eds Powell, J. R. & Eterno, C. T.) 554–564 (NTIS, 1978).

    Google Scholar 

  108. 108

    Bloom, E. E. et al. Low activation materials for fusion applications. J. Nucl. Mater. 122, 123, 17–26 (1984).

    Article  Google Scholar 

  109. 109

    Ullmaier, H. The influence of helium on the bulk properties of fusion reactor structural materials. Nucl. Fusion 24, 1039–1083 (1984).

    Article  Google Scholar 

  110. 110

    Harries, D. R. et al. Evaluation of reduced-activation options for fusion materials development. J. Nucl. Mater. 191–194, 92–99 (1992).

    Article  ADS  Google Scholar 

  111. 111

    Baluc, N. et al. Status of R&D activities on materials for fusion power reactors. Nucl. Fusion 47, S696–S717 (2007).

    Article  Google Scholar 

  112. 112

    Bloom, E. E. et al. Critical questions in materials science and engineering for successful development of fusion power. J. Nucl. Mater. 367–370, 1–10 (2007).

    Article  ADS  Google Scholar 

  113. 113

    Zinkle, S. J., Möslang, A., Muroga, T. & Tanigawa, H. Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 53, 104024 (2013).

    Article  ADS  Google Scholar 

  114. 114

    Knaster, J. et al. Assessment of the beam–target interaction of IFMIF: a state of the art. Fusion Eng. Des. 89, 1709–1716 (2014).

    Article  Google Scholar 

  115. 115

    Knaster, J. et al. IFMIF: overview of the validation activities. Nucl. Fusion 53, 116001 (2013).

    Article  ADS  Google Scholar 

  116. 116

    Micciche, G. et al. Engineering design and steady state thermomechanical analysis of the IFMIF European lithium target system. In IEEE 25th Symp. Fusion Engineering (SOFE, 2013).

  117. 117

    Fischer, U. et al. Overview of recent progress in IFMIF neutronics. Fusion Eng. Des. 81, 1195–1202 (2006).

    Article  Google Scholar 

  118. 118

    Knaster, J. et al. The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: the European-Japanese project towards a Li(d, xn) fusion relevant neutron source. Nucl. Fusion 55, 086003 (2015).

    Article  ADS  Google Scholar 

  119. 119

    Arbeiter, F. et al. Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase. Nucl. Mater. Energy (in the press).

  120. 120

    Kondo, H. et al. Validation of IFMIF liquid Li target for IFMIF/EVEDA project. Fusion Eng. Des. 96–97, 117–122 (2015).

    Article  Google Scholar 

  121. 121

    Kondo, H. et al. Demonstration of Li target facility in IFMIF/EVEDA project: Li target stability in continuous operation of entire system. Fusion Eng. Des. (2015).

  122. 122

    Kanemura, T. et al. Measurement of Li target thickness in the EVEDA Li test loop. Fusion Eng. Des. 98–99, 1991–1997 (2015).

    Article  Google Scholar 

  123. 123

    Knaster, J. et al. IFMIF, the European-Japanese efforts under the Broader Approach Agreement towards a Li(d,xn) neutron source: current status and future options. Nucl. Mater. Energy (in the press).

  124. 124

    Perez, M. et al. The engineering design evolution of IFMIF: from CDR to EDA. Fusion Eng. Des. 96–97, 325–328 (2015).

    Article  Google Scholar 

  125. 125

    Pottmeyer, E. W. Jr The fusion material irradiation facility at Handford. J. Nucl. Mater. 85, 86, 463–465 (1979).

    Article  Google Scholar 

  126. 126

    Noda, K. et al. Present status of ESNIT (energy selective neutron irradiation test facility) program. J. Nucl. Mater. 212–215, 1649–1654 (1994).

    Article  ADS  Google Scholar 

  127. 127

    Knaster, J. & Okumura, Y. Accelerators for fusion materials testing. Rev. Accel. Sci. Technol. 8, 115–142 (2015).

    Article  Google Scholar 

  128. 128

    Young, L. M., Rybaryck, L. J., Schneider, J. D., Smith, H. V. & Schultz, M. High power operations of LEDA. In Proc. LINAC 2000 (SLAC, 2000).

  129. 129

    Taylor, T. & Wills, J. S. C. A high-current low-emittance dc ECR proton source. Nucl. Instrum. Methods Phys. Res. A 309, 37–42 (1991).

    Article  ADS  Google Scholar 

  130. 130

    Shepard, K. W. et al. Prototype 350 MHz niobium spoke-loaded cavities. In Proc. IEEE Particle Accelerator Conf. Vol. 2 955–956 (IEEE, 1999).

    Google Scholar 

  131. 131

    Kelly, M. Superconducting radio-frequency cavities for low-beta particle accelerators. Rev. Accel. Sci. Technol. 5, 185–200 (2012).

    Article  Google Scholar 

  132. 132

    Gobin, R. et al. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization). Rev. Sci. Inst. 85, 02A918 (2014).

    Article  Google Scholar 

  133. 133

    Okumura, Y. et al. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc Injector. Rev. Sci. Instrum. 87, 02A379 (2016).

    Article  Google Scholar 

  134. 134

    Kondo, H. et al. IFMIF/EVEDA lithium test loop: design and fabrication technology of target assembly as a key component. Nucl. Fusion 51, 123008 (2011).

    Article  ADS  Google Scholar 

  135. 135

    Arbeiter, F. et al. Development and validation status of the IFMIF High Flux Test Module. Fusion Eng. Des. 86, 607–610 (2011).

    Article  Google Scholar 

  136. 136

    Schlindwein, G. et al. Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules. Fusion Eng. Des. 87, 737–741 (2012).

    Article  Google Scholar 

  137. 137

    Lucas, G. E. The development of small specimens mechanical test techniques. J. Nucl. Mater. 117, 327–339 (1983).

    Article  ADS  Google Scholar 

  138. 138

    Jung, P. et al. Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source. J. Nucl. Mater. 232, 186–205 (1996).

    Article  ADS  Google Scholar 

  139. 139

    Lucas, G. E. et al. The role of small specimen test technology in fusion materials development. J. Nucl. Mater. 367–370, 1549–1556 (2007).

    Article  ADS  Google Scholar 

  140. 140

    Wakai, E. et al. Overview on recent progress towards small specimen test technique. Fusion Eng. Des. 98–99, 2089–2093 (2015).

    Article  Google Scholar 

  141. 141

    Nogami, S. et al. Development of fatigue life evaluation method using small specimen. J. Nucl. Mater. 441, 125–132 (2013).

    Article  ADS  Google Scholar 

  142. 142

    Kim, B. J. et al. Application of master curve method to the evaluation of fracture toughness of F82H steels. J. Nucl. Mater. 442, S38–S42 (2013).

    Article  Google Scholar 

  143. 143

    Ito, Y. et al. Crack growth behavior of F82H steel in the 288 °C water. J. Plasma Fusion Res. 11, 73–78 (2015).

    Google Scholar 

  144. 144

    Ibarra, A. et al. A stepped Approach from IFMIF/EVEDA toward IFMIF. Fusion Sci. Tech. 66, 252–259 (2014).

    Article  Google Scholar 

  145. 145

    Heidinger, R. et al. Technical analysis of an early fusion neutron source based on the enhancement of the IFMIF/EVEDA accelerator prototype. Fusion Eng. Des. 89, 2136–2140 (2014).

    Article  Google Scholar 

  146. 146

    Mota, F. et al. Sensitivity of IFMIF-DONES irradiation characteristics to different design parameters. Nucl. Fusion 55, 123024 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Knaster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knaster, J., Moeslang, A. & Muroga, T. Materials research for fusion. Nature Phys 12, 424–434 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing