Abstract
Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium–tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eddington, A. The internal constitution of the stars. Observatory 43, 341–358 (1920).
Lawson, J. D. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6–10 (1957).
Wigner, E. P. Theoretical physics in the metallurgical laboratory of Chicago. J. Appl. Phys. 17, 857–863 (1946).
Robinson, M. T. Basics physics of radiation damage production. J. Nucl. Mater. 216, 1–28 (1994).
Zinkle, S. J. Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 3, 65–98 (Elsevier, 2012).
Nordlund, K. et al. Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate In-cascade Mixing and Defect Production Efficiency Effects (OECD Nuclear Energy Agency, 2015).
Greenwood, L. R. Neutron interactions and atomic recoil spectra. J. Nucl. Mater. 216, 29–44 (1994).
Noda, T. et al. Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors. J. Nucl. Mater. 258–263, 934–939 (1998).
Tanno, T. et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten. J. Nucl. Mater. 386–388, 218–221 (2009).
Fischer, U. et al. Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors. J. Nucl. Mater. 329–333, 228–232 (2004).
Kiritani, M. Defect structure evolution from radiation damage with D-T fusion neutrons. J. Nucl. Mater. 133, 134, 85–91 (1985).
Mansur, L. et al. Mechanical properties changes induced in structural alloys by neutron irradiations with different helium to displacement ratios. J. Nucl. Mater. 155–157, 130–147 (1988).
Sigmund, P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969).
Stoeklin, G. Chemie Heisser Atome (Verlag Chemie, 1969).
Parkin, D. M. & Coulter, C. A. Displacement cascades in polyatomic materials. J. Nucl. Mater. 117, 340–344 (1983).
Muroga, T. et al. The effect of recoil energy spectrum on cascades structure defect production efficiencies. J. Nucl. Mater. 133, 134, 378–382 (1985).
Lindhard, J. & Winther, A. Stopping power of electron gas and equipartition rule. Mat. Fys. Med. Dan. Vid. Selsk. 34, 4 (1964).
Bethe, H. A. Bremsformel für Elektronen relativistischer Geschwindigkeit. Z. Phys. 76, 293–299 (1932).
Fermi, E. The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485–493 (1940).
Bohr, N. Scattering and stopping of fission fragments. Phys. Rev. 58, 654–655 (1940).
Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids (eds Ziegler, J. F., Biersack, J. P. & Littmark, U.) (The Stopping and Range of Ions in Matter Vol. 1, Pergamon, 1985).
Ziegler, J. F. SRIM-code. (2013); http://www.srim.org/#SRIM
Cawthorne, C. & Fulton, E. J. Voids in irradiated stainless steel. Nature 216, 575–576 (1967).
Kinchin, G. H. & Pease, R. S. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1–51 (1955).
Frenkel, J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938).
Norgett, M. I., Robinson, M. T. & Torrens, I. M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975).
ASTM E693 Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA) (ASTM International).
Odette, G. R. Modelling of microstructural evolution under irradiation. J. Nucl. Mater. 85–86, 533–545 (1979).
Zinkle, S. & Moeslang, A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Eng. Des. 88, 472–482 (2013).
Ehrlich, K., Bloom, E. E. & Kondo, T. International strategy for fusion materials development. J. Nucl. Mater. 283–287, 79–88 (2000).
Zinkle, S. J. & Snead, L. L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241–267 (2014).
Odette, G. R. & Frey, D. Development of mechanical property correlation methodology for fusion environments. J. Nucl. Mater. 85–86, 617–822 (1979).
Kiritani, M. Fission-fusion correlation by fission reactor irradiation with improved control. J. Nucl. Mater. 174, 327–351 (1990).
Was, G. S. Materials degradation in fission reactors: lessons learned of relevance to fusion reactor systems. J. Nucl. Mater. 367–370, 11–20 (2007).
Kiritani, M. The need for improved temperature control during reactor irradiation. J. Nucl. Mater. 160, 135–141 (1988).
Moeslang, A., Adelhelm, C. & Heidinger, R. Innovative materials for energy technology. Int. J. Mater. Res. 99, 1045–1054 (2008).
Zinkle, S. Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005).
Wong, C. P. C. et al. Overview of liquid metal TBM concepts and programs. Fusion Eng. Des. 83, 850–857 (2008).
Tavassoli, A. et al. Current status and recent research achievements in ferritic/martensitic steels. J. Nucl. Mater. 455, 296–276 (2014).
Wurster, S. et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J. Nucl. Mater. 442, S181–S189 (2013).
Knitter, R. Recent developments of solid breeder fabrication. J. Nucl. Mater. 442, S420–S424 (2013).
Weber, H. Radiation effects on superconducting fusion magnet components. Int. J. Mod. Phys. E 20, 1325–1378 (2011).
Humer, K. et al. Characterization and qualification of advanced insulators for fusion magnets. Fusion Eng. Des. 88, 350–360 (2013).
Heidinger, R., Rohde, M. & Spörl, R. Neutron irradiation studies on window materials for EC wave system. Fusion Eng. Des. 56–57, 471–476 (2001).
Wirth, B. D. et al. Modelling defect cluster evolution in irradiated structural materials: focus on comparing to high-resolution experimental characterization studies. J. Mater. Res. 30, 1440–1455 (2015).
Wirth, B. D. et al. Fusion materials modelling: challenges and opportunities. Mater. Res. Soc. 36, 216–222 (2011).
Crocombette, J.-P. & Willaime, F. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 8, 223–248 (Elsevier, 2012).
Marinica, M.-C. et al. Irradiation-induced formation of nanocrystallites with C15 laves phase structure in bcc iron. Phys. Rev. Lett. 108, 025501 (2012).
Bachurin, D. V. et al. Ab initio study of hydrogen on beryllium surfaces. Surf. Sci. 641, 198–203 (2015).
Nguyen-Manh, D. & Dudarev, S. L. Trapping of He clusters by inert-gas impurities in tungsten: first-principles predictions and experimental validation. Nucl. Instrum. Methods Phys. Res. B 352, 86–91 (2015).
Cai, W., Li, J. & Yip, S. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 9, 249–265 (Elsevier, 2012).
Sand, A. E. et al. High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws. Europhys. Lett. 103, 46003 (2013).
Stoller, R. E. The role of cascade energy and temperature in primary defect formation in iron. J. Nucl. Mater. 276, 22–32 (2000).
Becquart, C. S. & Wirth, B. D. Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 14, 393–410 (Elsevier, 2012).
Souidi, A. et al. On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419, 122–133 (2011).
Ghoniem, N. M. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 16, 433–453 (Elsevier, 2012).
Arsenlis, A. et al. A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater. 60, 3748–3757 (2012).
Stoller, R. E. et al. Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J. Nucl. Mater. 382, 77–90 (2008).
Besmann, T. M. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 17, 455–470 (Elsevier, 2012).
Franke, P. & Seifert, H. J. The influence of magnetic and chemical ordering on the phase diagram of Cr–Fe–Ni. Calphad 35, 148–154 (2011).
Bellon, P. in Comprehensive Nuclear Materials Vol. 1 (ed. Konings, R. J. M.) Ch. 15, 411–432 (Elsevier, 2012).
ITER; www.iter.org
Giancarli, L. et al. Test blanket modules in ITER: an overview on proposed designs and required DEMO-relevant materials. J. Nucl. Mater. 367–370, 1271–1280 (2007).
Ehrlich, K. et al. in 17th Int. Symp. Effects of Radiation on Materials Vol. 1270 (eds Gelles, D. S., Nanstad, R. K., Kumar, A. S. & Little, E. A.) 1109–1112 (ASTM STP, 1996).
Gilbert, M. R. & Forrest, R. A. Handbook of Activation Data Calculated Using EASY-2003 Report UKAEA FUS 509 (UKAEA, July 2004).
Katoh, Y. et al. Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387–397 (2014).
Muroga, T. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 455, 263–268 (2014).
El-Guebaly, L., Malang, S., Rowcliffe, A. & Waganer, L. Blanket/materials testing strategy for FNSF and its breeding potential. Fusion Sci. Technol. 68, 251–258 (2015).
Odette, G. R. et al. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).
Gilbert, M. R. et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater. 442, S755–S760 (2013).
Odette, G. R. On the ductile to brittle transition in martensitic stainless steels—mechanisms, models and structural implications. J. Nucl. Mater. 212–215, 45–51 (1994).
Fletcher, R. C. & Brown, W. L. Annealing of bombardment damage in a diamond-type lattice: theoretical. Phys. Rev. 92, 585–590 (1953).
Gaganidze, E. et al. Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60. J. Nucl. Mater. 417, 93–98 (2011).
Materna-Morris, E. et al. Effect of helium on tensile properties and microstructure in 9%Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450 °C. J. Nucl. Mater. 386–388, 422–425 (2009).
Stork, D. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J. Nucl. Mater. 455, 277–291 (2014).
Knaster, J. et al. IFMIF, a fusion relevant neutron source for material irradiation current status. J. Nucl. Mater. 453, 115–119 (2014).
Vladimirov, P. & Möslang, A. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources. J. Nucl. Mater. 343, 205–211 (2005).
Grand, P. et al. An intense Li(d, n) neutron radiation test facility for controlled thermonuclear reactor materials testing. Nucl. Technol. 29, 327–336 (1976).
Trego, A. L., Hagan, J. W., Opperman, E. K. & Burke, R. J. Fusion materials irradiation test facility—a facility for fusion materials qualification. Fusion Sci. Technol. 4, 695–700 (1983).
Surrey, E. et al. FAFNIR: strategy and risk reduction in accelerator driven neutron sources for fusion materials irradiation data. Fusion Eng. Des. 89, 2108–2113 (2014).
Yamanishi, T. et al. Recent technical progress on BA Program: DEMO activities and IFMIF/EVEDA. Fusion Eng. Des. (2016).
Abdou, M. A. A volumetric neutron source for fusion nuclear technology testing and development. Fusion Eng. Des. 27, 111–153 (1995).
Vos, G. M. et al. Conceptual design of a component test facility based on the spherical tokamak. Fusion Eng. Des. 83, 1648–1653 (2008).
Peng, Y. K. M. et al. Fusion Nuclear Science Facility (FNSF) before upgrade to Component Test Facility (CTF). Fusion Sci. Technol. 60, 441–448 (2011).
Gilbert, M. R. & Sublet, J.-Ch. Neutron-induced transmutation effects in W and W-alloys in a fusion environment. Nucl. Fusion 51, 043005 (2011).
Li, M. et al. Sweeping heat flux loads on divertor targets: thermal benefits and structural impacts. Fusion Eng. Des. 102, 50–58 (2016).
Pintsuk, G. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 17, 551–581 (Elsevier, 2012).
Snead, L. & Ferraris, M. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 18, 583–620 (Elsevier, 2012).
Federici, G. et al. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 19, 621–666 (Elsevier, 2012).
Smid, I. et al. Development of tungsten armor and bonding to copper for plasma-interactive components. J. Nucl. Mater. 258–263, 160–172 (1998).
Rieth, M. et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432, 482–500 (2013).
Leonard, K. J. in Comprehensive Nuclear Materials Vol. 4 (ed. Konings, R. J. M.) Ch. 6, 181–213 (Elsevier, 2012).
Stork, D. et al. Materials R&D for a timely DEMO: key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des. 89, 1586–1594 (2014).
Roedig, M. et al. Investigation of tungsten alloys as plasma facing materials for the ITER divertor. Fusion Eng. Des. 61–62, 135–140 (2002).
Shimakawa, S. et al. New electron beam facility for irradiated plasma facing materials testing in hot cell. J. Nucl. Mater. 233–237, 1582–1585 (1996).
Roedig, M. et al. Comparison of electron beam test facilities for testing of high heat flux components. Fusion Eng. Des. 51–52, 715–722 (2000).
Akiba, M. et al. Performance of JAERI electron beam irradiation stand. Plasma Dev. Oper. 1, 205–212 (1991).
Tokunaga, K. et al. High-heat-flux experiment on plasma-facing materials by electron beam irradiation. J. Nucl. Mater. 212–215, 1323–1328 (1994).
Diotalevi, M., Febvre, M. & Chappuis, P. Evolution of framatome and CEA high thermal flux station for fusion technology experiments needs. in Fusion Technology 1996 (eds Varandas, C. & Serra, F.) 491–494 (North-Holland, 1997).
Wu, J. H. et al. Research of high heat flux for divertor materials. Chin. J. Nucl. Sci. Eng. 23, 132–138 (2003).
Gervash, A. et al. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints. Fusion Eng. Des. 39–40, 543–549 (1998).
Youchison, D. L., McDonald, J. M. & Wold, L. S. in Heat Transfer in High Heat Flux Systems Book No. G00956 (eds Boyd, R. D. & Ghajar, A. J.) (ASME, 1994).
Hofmann, G. & Eggert, E. The First Wall Test Facility FIWATKA—Description of the Facility and Report on Commissioning Tests Report KfK 5381 (KIT publications, 1994).
Dell’Orco, G. et al. Thermal–mechanical test on ITER primary first wall mock-ups. Fusion Eng. Des. 61–62, 117–122 (2002).
Hirai, T., Ezato, K. & Majerus, P. ITER relevant high heat flux testing on plasma facing surfaces. Mater. Trans. 46, 412–424 (2005).
Bucalossi, J. et al. The WEST project: testing ITER divertor high heat flux component technology in a steady state tokamak environment. Fusion Eng. Des. 89, 907–912 (2014).
Bloom, E. E., Stiegler, J. O. & Wiffen, F. W. Alloy development for irradiation performance. In Proc. 3rd Topical Meeting Technology of Controlled Nuclear Fusion CONF-780808 (eds Powell, J. R. & Eterno, C. T.) 554–564 (NTIS, 1978).
Bloom, E. E. et al. Low activation materials for fusion applications. J. Nucl. Mater. 122, 123, 17–26 (1984).
Ullmaier, H. The influence of helium on the bulk properties of fusion reactor structural materials. Nucl. Fusion 24, 1039–1083 (1984).
Harries, D. R. et al. Evaluation of reduced-activation options for fusion materials development. J. Nucl. Mater. 191–194, 92–99 (1992).
Baluc, N. et al. Status of R&D activities on materials for fusion power reactors. Nucl. Fusion 47, S696–S717 (2007).
Bloom, E. E. et al. Critical questions in materials science and engineering for successful development of fusion power. J. Nucl. Mater. 367–370, 1–10 (2007).
Zinkle, S. J., Möslang, A., Muroga, T. & Tanigawa, H. Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 53, 104024 (2013).
Knaster, J. et al. Assessment of the beam–target interaction of IFMIF: a state of the art. Fusion Eng. Des. 89, 1709–1716 (2014).
Knaster, J. et al. IFMIF: overview of the validation activities. Nucl. Fusion 53, 116001 (2013).
Micciche, G. et al. Engineering design and steady state thermomechanical analysis of the IFMIF European lithium target system. In IEEE 25th Symp. Fusion Engineeringhttp://dx.doi.org/10.1109/SOFE.2013.6635384 (SOFE, 2013).
Fischer, U. et al. Overview of recent progress in IFMIF neutronics. Fusion Eng. Des. 81, 1195–1202 (2006).
Knaster, J. et al. The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: the European-Japanese project towards a Li(d, xn) fusion relevant neutron source. Nucl. Fusion 55, 086003 (2015).
Arbeiter, F. et al. Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase. Nucl. Mater. Energy (in the press).
Kondo, H. et al. Validation of IFMIF liquid Li target for IFMIF/EVEDA project. Fusion Eng. Des. 96–97, 117–122 (2015).
Kondo, H. et al. Demonstration of Li target facility in IFMIF/EVEDA project: Li target stability in continuous operation of entire system. Fusion Eng. Des. (2015).
Kanemura, T. et al. Measurement of Li target thickness in the EVEDA Li test loop. Fusion Eng. Des. 98–99, 1991–1997 (2015).
Knaster, J. et al. IFMIF, the European-Japanese efforts under the Broader Approach Agreement towards a Li(d,xn) neutron source: current status and future options. Nucl. Mater. Energy (in the press).
Perez, M. et al. The engineering design evolution of IFMIF: from CDR to EDA. Fusion Eng. Des. 96–97, 325–328 (2015).
Pottmeyer, E. W. Jr The fusion material irradiation facility at Handford. J. Nucl. Mater. 85, 86, 463–465 (1979).
Noda, K. et al. Present status of ESNIT (energy selective neutron irradiation test facility) program. J. Nucl. Mater. 212–215, 1649–1654 (1994).
Knaster, J. & Okumura, Y. Accelerators for fusion materials testing. Rev. Accel. Sci. Technol. 8, 115–142 (2015).
Young, L. M., Rybaryck, L. J., Schneider, J. D., Smith, H. V. & Schultz, M. High power operations of LEDA. In Proc. LINAC 2000 (SLAC, 2000).
Taylor, T. & Wills, J. S. C. A high-current low-emittance dc ECR proton source. Nucl. Instrum. Methods Phys. Res. A 309, 37–42 (1991).
Shepard, K. W. et al. Prototype 350 MHz niobium spoke-loaded cavities. In Proc. IEEE Particle Accelerator Conf. Vol. 2 955–956 (IEEE, 1999).
Kelly, M. Superconducting radio-frequency cavities for low-beta particle accelerators. Rev. Accel. Sci. Technol. 5, 185–200 (2012).
Gobin, R. et al. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization). Rev. Sci. Inst. 85, 02A918 (2014).
Okumura, Y. et al. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc Injector. Rev. Sci. Instrum. 87, 02A379 (2016).
Kondo, H. et al. IFMIF/EVEDA lithium test loop: design and fabrication technology of target assembly as a key component. Nucl. Fusion 51, 123008 (2011).
Arbeiter, F. et al. Development and validation status of the IFMIF High Flux Test Module. Fusion Eng. Des. 86, 607–610 (2011).
Schlindwein, G. et al. Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules. Fusion Eng. Des. 87, 737–741 (2012).
Lucas, G. E. The development of small specimens mechanical test techniques. J. Nucl. Mater. 117, 327–339 (1983).
Jung, P. et al. Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source. J. Nucl. Mater. 232, 186–205 (1996).
Lucas, G. E. et al. The role of small specimen test technology in fusion materials development. J. Nucl. Mater. 367–370, 1549–1556 (2007).
Wakai, E. et al. Overview on recent progress towards small specimen test technique. Fusion Eng. Des. 98–99, 2089–2093 (2015).
Nogami, S. et al. Development of fatigue life evaluation method using small specimen. J. Nucl. Mater. 441, 125–132 (2013).
Kim, B. J. et al. Application of master curve method to the evaluation of fracture toughness of F82H steels. J. Nucl. Mater. 442, S38–S42 (2013).
Ito, Y. et al. Crack growth behavior of F82H steel in the 288 °C water. J. Plasma Fusion Res. 11, 73–78 (2015).
Ibarra, A. et al. A stepped Approach from IFMIF/EVEDA toward IFMIF. Fusion Sci. Tech. 66, 252–259 (2014).
Heidinger, R. et al. Technical analysis of an early fusion neutron source based on the enhancement of the IFMIF/EVEDA accelerator prototype. Fusion Eng. Des. 89, 2136–2140 (2014).
Mota, F. et al. Sensitivity of IFMIF-DONES irradiation characteristics to different design parameters. Nucl. Fusion 55, 123024 (2015).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Knaster, J., Moeslang, A. & Muroga, T. Materials research for fusion. Nature Phys 12, 424–434 (2016). https://doi.org/10.1038/nphys3735
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3735
This article is cited by
-
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys
Nuclear Science and Techniques (2024)
-
A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments
Nature Communications (2023)
-
Hydrogen and helium trapping in hcp beryllium
Communications Chemistry (2023)
-
Microstructure of a heavily irradiated metal exposed to a spectrum of atomic recoils
Scientific Reports (2023)
-
Developing Core-Shell Nano-Structures in FeCrAl-ODS Ferritic Alloys with the Co-Addition of Ni and Zr
Acta Metallurgica Sinica (English Letters) (2023)