Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser cooling and control of excitations in superfluid helium

Abstract

Superfluidity is a quantum state of matter that exists macroscopically in helium at low temperatures. The elementary excitations in superfluid helium have been probed with great success using techniques such as neutron and light scattering. However, measurements of phonon excitations have so far been limited to average thermodynamic properties or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of phonon excitations in real time. Furthermore, strong light–matter interactions allow both laser cooling and amplification. This represents a new tool to observe and control superfluid excitations that may provide insight into phonon–phonon interactions, quantized vortices and two-dimensional phenomena such as the Berezinskii–Kosterlitz–Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including the prospect of femtogram masses, high mechanical quality factors, strong phonon–phonon and phonon–vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optomechanics with superfluid helium films.
Figure 2: Superfluid helium mechanics.
Figure 3: Real-time measurements of superfluid motion.
Figure 4: Optomechanical heating and cooling of two third sound modes.

References

  1. 1

    Hoffmann, J. A., Penanen, K., Davis, J. C. & Packard, R. E. Measurements of attenuation of third sound: evidence of trapped vorticity in thick films of superfluid He-4. J. Low Temp. Phys. 135, 177–202 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Ellis, F. M. & Luo, H. Observation of the persistent-current splitting of a 3rd-sound resonator. Phys. Rev. B 39, 2703–2706 (1989).

    ADS  Article  Google Scholar 

  3. 3

    Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 4647–4652 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Bishop, D. J. & Reppy, J. D. Study of the superfluid transition in two-dimensional films. Phys. Rev. Lett. 40, 1727–1730 (1978).

    ADS  Article  Google Scholar 

  5. 5

    Tilley, D. & Tilley, J. Superfluidity and Superconductivity (CRC, 1990).

    Google Scholar 

  6. 6

    Bramwell, S. T. & Keimer, B. Neutron scattering from quantum condensed matter. Nature Mater. 13, 763–767 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Pike, E. R., Vaughan, J. M. & Vinen, W. F. Brillouin scattering from superfluid He-4. J. Phys. C 3, L40 (1970).

    ADS  Article  Google Scholar 

  8. 8

    Fonda, E., Meichle, D. P., Ouellette, N. T., Hormoz, S. & Lathrop, D. P. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl Acad. Sci. USA 111, 4707–4710 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Brooks, J. S., Ellis, F. M. & Hallock, R. B. Direct observation of third-sound mass displacement waves in unsaturated superfluid films. Phys. Rev. Lett. 40, 240–243 (1978).

    ADS  Article  Google Scholar 

  10. 10

    De Lorenzo, L. A. & Schwab, K. C. Superfluid optomechanics: coupling of a superfluid to a superconducting condensate. New J. Phys. 16, 113020 (2014).

    Article  Google Scholar 

  11. 11

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Bowen, W. P. & Milburn, G. Quantum Optomechanics (CRC, 2016).

    Google Scholar 

  13. 13

    Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Brooks, D. W. C. et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    ADS  Article  Google Scholar 

  17. 17

    Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Lecocq, F., Clark, J., Simmonds, R., Aumentado, J. & Teufel, J. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).

    Google Scholar 

  20. 20

    Metcalfe, M. Applications of cavity optomechanics. Appl. Phys. Rev. 1, 031105 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nature Photon. 6, 768–772 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Forstner, S. et al. Ultrasensitive optomechanical magnetometry. Adv. Mater. 26, 6348–6353 (2014).

    Article  Google Scholar 

  23. 23

    Agarwal, G. S. & Jha, S. S. Theory of optomechanical interactions in superfluid He. Phys. Rev. A 90, 023812 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Penanen, K. & Packard, R. E. A model for third sound attenuation in thick He-4 films. J. Low Temp. Phys. 128, 25–35 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Atkins, K. R. Third and fourth sound in liquid helium ii. Phys. Rev. 113, 962–965 (1959).

    ADS  Article  Google Scholar 

  27. 27

    Shirron, P. J. & Mochel, J. M. Atomically thin superfluid-helium films on solid hydrogen. Phys. Rev. Lett. 67, 1118–1121 (1991).

    ADS  Article  Google Scholar 

  28. 28

    Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Harris, G. I., Andersen, U. L., Knittel, J. & Bowen, W. P. Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier. Phys. Rev. A 85, 061802 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Riviere, R., Arcizet, O., Schliesser, A. & Kippenberg, T. J. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat. Rev. Sci. Instrum. 84, 043108 (2013).

    ADS  Article  Google Scholar 

  31. 31

    McAuslan, D. L. et al. Microphotonic forces from superfluid flow. Preprint at http://arxiv.org/abs/1512.07704 (2015).

  32. 32

    Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    ADS  Article  Google Scholar 

  33. 33

    Restrepo, J., Gabelli, J., Ciuti, C. & Favero, I. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. C. R. Phys. 12, 860–870 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Jourdan, G., Comin, F. & Chevrier, J. Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43–48 (July, 2005).

    Article  Google Scholar 

  36. 36

    Simula, T., Davis, M. J. & Helmerson, K. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett. 113, 165302 (2014).

    ADS  Article  Google Scholar 

  37. 37

    Kozik, E. & Svistunov, B. Vortex-phonon interaction. Phys. Rev. B 72, 172505 (2005).

    ADS  Article  Google Scholar 

  38. 38

    Davis, S. I., Hendry, P. C. & McClintock, P. V. E. Decay of quantized vorticity in superfluid 4He at mK temperatures. Physica B 280, 43–44 (2000).

    ADS  Article  Google Scholar 

  39. 39

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Centre for Engineered Quantum Systems (CE110001013). Micro-fabrication was performed at the Queensland Node of the Australian National Fabrication Facility (ANFF-Q). W.P.B. was supported by the ARC Future Fellowship FT140100650. The authors thank G. A. Brawley, M. J. Davis, B. J. Powell and Z. Duan for valuable discussions.

Author information

Affiliations

Authors

Contributions

G.I.H. and D.L.M. conducted the experiments and contributed equally to this work. G.I.H., D.L.M. and W.P.B. formulated the theory, analysed the data and wrote the manuscript. Micro-fabrication was performed by D.L.M. and E.S., and C.B. and Y.S. contributed to the experiments. The project was led by W.P.B.

Corresponding author

Correspondence to W. P. Bowen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2505 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harris, G., McAuslan, D., Sheridan, E. et al. Laser cooling and control of excitations in superfluid helium. Nature Phys 12, 788–793 (2016). https://doi.org/10.1038/nphys3714

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing