Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions

Abstract

Dynamical and structural heterogeneities have long been thought to play a key role in a unified picture of solidification in view of the two competitive processes of crystallization and vitrification. Here, we study these heterogeneities by means of a combination of dynamic and static light-scattering techniques applied to the simplest model system exhibiting crystallization and vitrification: the colloidal hard-sphere system. Our method enables us to quantify and correlate the temporal evolution of the amount of ordered clusters (precursors) and the amount of slow particles. Our analysis shows that their temporal evolutions are closely related and that there is an intimate link between structural and dynamic heterogeneities, crystal nucleation and the non-crystallization transition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal evolution of the solid material of a crystallizing sample close to ϕNC.
Figure 2: Temporal evolution of the non-equilibrium dynamics during solidification.
Figure 3: Temporal evolution of the subensemble-resolved long-time dynamics during solidification.
Figure 4: Comparison between the temporal evolution of the solid fraction and the fraction of immobile particles.

Similar content being viewed by others

References

  1. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  ADS  Google Scholar 

  2. Richert, R. Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys. Condens. Matter 14, R703–R738 (2002).

    Article  ADS  Google Scholar 

  3. Widmer-Cooper, A. & Harrowell, P. On the relationship between structure and dynamics in a supercooled liquid. J. Phys. Condens. Matter 17, S4025–S4034 (2005).

    Article  ADS  Google Scholar 

  4. van Megen, W. & Bryant, G. Dynamical heterogeneity and the freezing transition in hard-sphere suspensions: further analysis of the mean square displacement and the velocity autocorrelation function. Phys. Rev. E 76, 021402 (2007).

    Article  ADS  Google Scholar 

  5. Taffs, J., Williams, S. R., Tanaka, H. & Royall, C. P. Structure and kinetics in the freezing of nearly hard spheres. Soft Matter 9, 297–305 (2013).

    Article  ADS  Google Scholar 

  6. Kawasaki, T. & Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  ADS  Google Scholar 

  7. Schöpe, H. J., Bryant, G. & van Megen, W. Two-step crystallization kinetics in colloidal hard-sphere systems. Phys. Rev. Lett. 96, 175701 (2006).

    Article  ADS  Google Scholar 

  8. Schilling, T., Schöpe, H. J., Oettel, M., Opletal, G. & Snook, I. Precursor-mediated crystallization process in suspensions of hard spheres. Phys. Rev. Lett. 105, 025701 (2010).

    Article  ADS  Google Scholar 

  9. Sanz, E. et al. Avalanches mediate crystallization in a hard-sphere glass. Proc. Natl Acad. Sci. USA 111, 75–80 (2014).

    Article  ADS  Google Scholar 

  10. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  Google Scholar 

  11. Kawasaki, T. & Tanaka, H. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation. J. Phys. Condens. Matter 22, 232102 (2010).

    Article  ADS  Google Scholar 

  12. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  13. Brito, C. & Wyart, M. Geometric interpretation of previtrification in hard sphere liquids. J. Chem. Phys. 131, 024504 (2009).

    Article  ADS  Google Scholar 

  14. Matharoo, G. S., Razul, M. S. G. & Poole, P. H. Structural and dynamical heterogeneity in a glass-forming liquid. Phys. Rev. E 74, 050502(R) (2006).

    Article  ADS  Google Scholar 

  15. Speck, T., Malins, A. & Royall, C. P. First-order phase transition in a model glass former: coupling of local structure and dynamics. Phys. Rev. Lett. 109, 195703 (2012).

    Article  ADS  Google Scholar 

  16. Weeks, E. R. & Weitz, D. A. Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett. 89, 095704 (2002).

    Article  ADS  Google Scholar 

  17. Conrad, J. C., Starr, F. W. & Weitz, D. A. Weak correlations between local density and dynamics near the glass transition. J. Phys. Chem. B 109, 21235–21240 (2005).

    Article  Google Scholar 

  18. Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nature Mater. 7, 556–561 (2008).

    Article  ADS  Google Scholar 

  19. Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nature Commun. 3, 1974 (2012).

    Article  Google Scholar 

  20. Hocky, G. M., Coslovich, D., Ikeda, A. & Reichman, D. R. Correlation of local order with particle mobility in supercooled liquids is highly system dependent. Phys. Rev. Lett. 113, 157801 (2014).

    Article  ADS  Google Scholar 

  21. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard sphere suspensions. Science 287, 290–293 (2000).

    Article  ADS  Google Scholar 

  22. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  23. Courtland, R. E. & Weeks, E. R. Direct visualization of ageing in colloidal glasses. J. Phys. Condens. Matter 15, S359–S365 (2003).

    Article  ADS  Google Scholar 

  24. Conrad, J. C., Dhillon, P. P., Weeks, E. R., Reichman, D. R. & Weitz, D. A. Contribution of slow clusters to the bulk elasticity near the colloidal glass transition. Phys. Rev. Lett. 97, 265701 (2006).

    Article  ADS  Google Scholar 

  25. Valeriani, C. et al. From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres. Soft Matter 8, 4960–4970 (2012).

    Article  ADS  Google Scholar 

  26. Schöpe, H. J., Bryant, G. & van Megen, W. Effect of polydispersity on the crystallization kinetics of suspensions of colloidal hard spheres when approaching the glass transition. J. Chem. Phys. 127, 084505 (2007).

    Article  ADS  Google Scholar 

  27. Franke, M., Golde, S. & Schöpe, H. J. Solidification of a colloidal hard sphere like model system approaching and crossing the glass transition. Soft Matter 10, 5380–5389 (2014).

    Article  ADS  Google Scholar 

  28. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Phys. 10, 73–79 (2014).

    Article  ADS  Google Scholar 

  29. Pusey, P. N. & van Megen, W. Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  Google Scholar 

  30. Kasper, A., Bartsch, E. & Silescu, H. Self-diffusion in concentrated colloidal suspensions studied by digital video microscopy of core–shell tracer particles. Langmuir 14, 5004–5010 (1998).

    Article  Google Scholar 

  31. Flenner, E., Zhang, M. & Szamel, G. Analysis of a growing dynamic length scale in a glass-forming binary hard-sphere mixture. Phys. Rev. E 83, 051501 (2011).

    Article  ADS  Google Scholar 

  32. Golde, S., Franke, M. & Schöpe, H. J. Space-resolved dynamic light scattering probing inhomogeneous dynamics in soft matter. AIP Conf. Proc. 1518, 304–307 (2013).

    Article  ADS  Google Scholar 

  33. Harland, J. L. & van Megen, W. Crystallization kinetics of suspensions of hard colloidal spheres. Phys. Rev. E 55, 3054–3067 (1997).

    Article  ADS  Google Scholar 

  34. Pusey, P. N. & van Megen, W. Dynamic light-scattering by non-ergodic media. Phys. A 157, 705–741 (1989).

    Article  Google Scholar 

  35. van Megen, W. & Underwood, S. M. Glass-transition in colloidal hard spheres—measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E 49, 4206–4220 (1994).

    Article  ADS  Google Scholar 

  36. Martinez, V. A., Bryant, G. & van Megen, W. Slow dynamics and aging of a colloidal hard sphere glass. Phys. Rev. Lett. 101, 135702 (2008).

    Article  ADS  Google Scholar 

  37. Schöpe, H. J., Marnette, O., van Megen, W. & Bryant, G. Preparation and characterization of particles with small differences in polydispersity. Langmuir 23, 11534–11539 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We are pleased to thank G. Bryant and M. Franke for helpful discussions and E. Bartsch for the particle synthesis. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) (Pa459/13, Pa459/16, and SCHO 1054/3-3). S.G. is a recipient of a fellowship through the Excellence Initiative (DFG/GSC 266).

Author information

Authors and Affiliations

Authors

Contributions

H.J.S. designed the research and set-up. S.G. and H.J.S. realized the set-up. S.G. performed the research. S.G. and H.J.S. analysed data. S.G., T.P. and H.J.S. contributed to writing this paper.

Corresponding author

Correspondence to Hans Joachim Schöpe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golde, S., Palberg, T. & Schöpe, H. Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions. Nature Phys 12, 712–717 (2016). https://doi.org/10.1038/nphys3709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing