Article | Published:

Generation and detection of atomic spin entanglement in optical lattices

Nature Physics volume 12, pages 783787 (2016) | Download Citation

Abstract

Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 ± 0.06, and a violation of a Bell’s inequality S = 2.21 ± 0.08.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  2. 2.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  3. 3.

    & Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

  4. 4.

    & Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

  5. 5.

    , , , & Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

  6. 6.

    et al. Quantum computers. Nature 464, 45–53 (2010).

  7. 7.

    Quantum simulation. Nature Phys. 8, 263 (2012).

  8. 8.

    Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).

  9. 9.

    , & Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices. New J. Phys. 10, 023005 (2008).

  10. 10.

    & A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

  11. 11.

    et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

  12. 12.

    , & Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

  13. 13.

    et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).

  14. 14.

    et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

  15. 15.

    et al. Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

  16. 16.

    et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

  17. 17.

    et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

  18. 18.

    , , & Collisional stability of double bose condensates. Phys. Rev. Lett. 78, 1880–1883 (1997).

  19. 19.

    et al. Dynamics of F = 2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).

  20. 20.

    , , & Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  21. 21.

    , , , & Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  22. 22.

    , , , & Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010).

  23. 23.

    , , & Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

  24. 24.

    , , , & Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004).

  25. 25.

    et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

  26. 26.

    , , & Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Phys. 5, 575–580 (2009).

  27. 27.

    et al. Preparation of decoherence-free cluster states with optical superlattices. Phys. Rev. A 79, 022309 (2009).

  28. 28.

    et al. Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011).

  29. 29.

    & Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004).

  30. 30.

    , , , & Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

  31. 31.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  32. 32.

    & Minimum instances of topological matter in an optical plaquette. Phys. Rev. A 77, 023603 (2008).

  33. 33.

    & Spinor bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

  34. 34.

    et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

Download references

Acknowledgements

We thank F. Yang, C. Lutz and T. Mandel for their help in setting up the experiment. This work was supported by the European Commission through an ERC-starting grant, the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the National Fundamental Research Program.

Author information

Affiliations

  1. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

    • Han-Ning Dai
    • , Bing Yang
    • , Andreas Reingruber
    • , Xiao-Fan Xu
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  2. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Han-Ning Dai
    • , Bing Yang
    • , Xiao Jiang
    • , Yu-Ao Chen
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  3. CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Han-Ning Dai
    • , Bing Yang
    • , Xiao Jiang
    • , Yu-Ao Chen
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  4. Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Strasse, Building 46, 67663 Kaiserslautern, Germany

    • Andreas Reingruber

Authors

  1. Search for Han-Ning Dai in:

  2. Search for Bing Yang in:

  3. Search for Andreas Reingruber in:

  4. Search for Xiao-Fan Xu in:

  5. Search for Xiao Jiang in:

  6. Search for Yu-Ao Chen in:

  7. Search for Zhen-Sheng Yuan in:

  8. Search for Jian-Wei Pan in:

Contributions

Y.-A.C., Z.-S.Y. and J.-W.P. initiated and designed this research project. H.-N.D., B.Y., A.R., X.-F.X. and Z.-S.Y. set up the experiment. X.J. built the electronic circuits for the locking lasers. H.-N.D., B.Y. and A.R. performed the measurement and analysed the data. All authors contributed in writing the manuscript. Z.-S.Y. and J.-W.P. supervised the whole project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Yu-Ao Chen or Zhen-Sheng Yuan or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3705