Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation and detection of atomic spin entanglement in optical lattices


Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 ± 0.06, and a violation of a Bell’s inequality S = 2.21 ± 0.08.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental apparatus.
Figure 2: Observation of spin dynamics driven by the superexchange interaction.
Figure 3: Measurement of the entanglement phase.
Figure 4: Measurement of spin correlations and entanglement.


  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  2. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  3. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  4. Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  5. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  ADS  Google Scholar 

  6. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  7. Trabesinger, A. Quantum simulation. Nature Phys. 8, 263 (2012).

    Article  ADS  Google Scholar 

  8. Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).

    Article  ADS  Google Scholar 

  9. Vaucher, B., Nunnenkamp, A. & Jaksch, D. Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices. New J. Phys. 10, 023005 (2008).

    Article  ADS  Google Scholar 

  10. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  11. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  12. Duan, L.-M., Demler, E. & Lukin, M. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    Article  ADS  Google Scholar 

  13. Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).

    Article  ADS  Google Scholar 

  14. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    Article  ADS  Google Scholar 

  15. Bakr, W. S. et al. Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  16. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  17. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

    Article  ADS  Google Scholar 

  18. Julienne, P., Mies, F., Tiesinga, E. & Williams, C. Collisional stability of double bose condensates. Phys. Rev. Lett. 78, 1880–1883 (1997).

    Article  ADS  Google Scholar 

  19. Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).

    Article  ADS  Google Scholar 

  20. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  MATH  Google Scholar 

  21. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  22. Trotzky, S., Chen, Y.-A., Schnorrberger, U., Cheinet, P. & Bloch, I. Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010).

    Article  ADS  Google Scholar 

  23. Blinov, B., Moehring, D., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  24. Calarco, T., Dorner, U., Julienne, P. S., Williams, C. J. & Zoller, P. Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004).

    Article  ADS  Google Scholar 

  25. Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    Article  ADS  Google Scholar 

  26. Lundblad, N., Obrecht, J. M., Spielman, I. B. & Porto, J. V. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Phys. 5, 575–580 (2009).

    Article  ADS  Google Scholar 

  27. Jiang, L. et al. Preparation of decoherence-free cluster states with optical superlattices. Phys. Rev. A 79, 022309 (2009).

    Article  ADS  Google Scholar 

  28. Bakr, W. S. et al. Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011).

    Article  ADS  Google Scholar 

  29. Alves, C. M. & Jaksch, D. Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004).

    Article  Google Scholar 

  30. Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

    Article  ADS  Google Scholar 

  31. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  32. Paredes, B. & Bloch, I. Minimum instances of topological matter in an optical plaquette. Phys. Rev. A 77, 023603 (2008).

    Article  ADS  Google Scholar 

  33. Stamper-Kurn, D. M. & Ueda, M. Spinor bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    Article  ADS  Google Scholar 

  34. Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

    Article  ADS  Google Scholar 

Download references


We thank F. Yang, C. Lutz and T. Mandel for their help in setting up the experiment. This work was supported by the European Commission through an ERC-starting grant, the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the National Fundamental Research Program.

Author information

Authors and Affiliations



Y.-A.C., Z.-S.Y. and J.-W.P. initiated and designed this research project. H.-N.D., B.Y., A.R., X.-F.X. and Z.-S.Y. set up the experiment. X.J. built the electronic circuits for the locking lasers. H.-N.D., B.Y. and A.R. performed the measurement and analysed the data. All authors contributed in writing the manuscript. Z.-S.Y. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Yu-Ao Chen, Zhen-Sheng Yuan or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 938 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, HN., Yang, B., Reingruber, A. et al. Generation and detection of atomic spin entanglement in optical lattices. Nature Phys 12, 783–787 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing