Abstract
Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 ± 0.06, and a violation of a Bell’s inequality S = 2.21 ± 0.08.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A scheme to create and verify scalable entanglement in optical lattice
npj Quantum Information Open Access 29 August 2022
-
Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements
Scientific Reports Open Access 11 January 2019
-
Statistical Analysis for Collision-free Boson Sampling
Scientific Reports Open Access 10 November 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).
Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Trabesinger, A. Quantum simulation. Nature Phys. 8, 263 (2012).
Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).
Vaucher, B., Nunnenkamp, A. & Jaksch, D. Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices. New J. Phys. 10, 023005 (2008).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
Duan, L.-M., Demler, E. & Lukin, M. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).
Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).
Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).
Bakr, W. S. et al. Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).
Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).
Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).
Julienne, P., Mies, F., Tiesinga, E. & Williams, C. Collisional stability of double bose condensates. Phys. Rev. Lett. 78, 1880–1883 (1997).
Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
Trotzky, S., Chen, Y.-A., Schnorrberger, U., Cheinet, P. & Bloch, I. Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010).
Blinov, B., Moehring, D., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
Calarco, T., Dorner, U., Julienne, P. S., Williams, C. J. & Zoller, P. Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004).
Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).
Lundblad, N., Obrecht, J. M., Spielman, I. B. & Porto, J. V. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Phys. 5, 575–580 (2009).
Jiang, L. et al. Preparation of decoherence-free cluster states with optical superlattices. Phys. Rev. A 79, 022309 (2009).
Bakr, W. S. et al. Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011).
Alves, C. M. & Jaksch, D. Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004).
Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Paredes, B. & Bloch, I. Minimum instances of topological matter in an optical plaquette. Phys. Rev. A 77, 023603 (2008).
Stamper-Kurn, D. M. & Ueda, M. Spinor bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).
Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).
Acknowledgements
We thank F. Yang, C. Lutz and T. Mandel for their help in setting up the experiment. This work was supported by the European Commission through an ERC-starting grant, the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the National Fundamental Research Program.
Author information
Authors and Affiliations
Contributions
Y.-A.C., Z.-S.Y. and J.-W.P. initiated and designed this research project. H.-N.D., B.Y., A.R., X.-F.X. and Z.-S.Y. set up the experiment. X.J. built the electronic circuits for the locking lasers. H.-N.D., B.Y. and A.R. performed the measurement and analysed the data. All authors contributed in writing the manuscript. Z.-S.Y. and J.-W.P. supervised the whole project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 938 kb)
Rights and permissions
About this article
Cite this article
Dai, HN., Yang, B., Reingruber, A. et al. Generation and detection of atomic spin entanglement in optical lattices. Nature Phys 12, 783–787 (2016). https://doi.org/10.1038/nphys3705
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3705
This article is cited by
-
A scheme to create and verify scalable entanglement in optical lattice
npj Quantum Information (2022)
-
Wide and fast-frequency tuning for a stabilized diode laser
Frontiers of Physics (2022)
-
Realization of a bosonic antiferromagnet
Nature Physics (2021)
-
Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements
Scientific Reports (2019)
-
Experimental characterization of two-particle entanglement through position and momentum correlations
Nature Physics (2019)