Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Size-dependent protein segregation at membrane interfaces

Abstract

Membrane interfaces formed at cell–cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a 5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell–cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: In vitro membrane interface system.
Figure 2: Effect of non-binding protein height on segregation at membrane interfaces.
Figure 3: Membrane bending by long non-binding proteins at membrane interfaces.
Figure 4: Effect of protein crowding on segregation at membrane interfaces.
Figure 5: Monte Carlo simulations of size-dependent protein segregation.

References

  1. 1

    Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    ADS  Article  Google Scholar 

  2. 2

    Dustin, M. L. The immunological synapse. Arthritis Res. Ther. 4, S119–S125 (2002).

    Article  Google Scholar 

  3. 3

    Rochlin, K., Yu, S., Roy, S. & Baylies, M. K. Myoblast fusion: when it takes more to make one. Dev. Biol. 341, 66–83 (2010).

    Article  Google Scholar 

  4. 4

    Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).

    Article  Google Scholar 

  5. 5

    Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471–475 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Aricescu, A. R. et al. Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317, 1217–1220 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    ADS  Article  Google Scholar 

  8. 8

    Dustin, M. L. Making a little affinity go a long way: a topological view of LFA-1 regulation. Cell Adhes. Commun. 6, 255–262 (1998).

    Article  Google Scholar 

  9. 9

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  Google Scholar 

  10. 10

    Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  Google Scholar 

  11. 11

    Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  Google Scholar 

  12. 12

    James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Cordoba, S.-P. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

    Article  Google Scholar 

  14. 14

    Siu, G., Springer, E. A. & Hedrick, S. M. The biology of the T-cell antigen receptor and its role in the skin immune system. J. Invest. Dermatol. 94, 91S–100S (1990).

    Article  Google Scholar 

  15. 15

    Davis, S. J. & van der Merwe, P. A. CD2: an exception to the immunoglobulin superfamily concept? Science 273, 1241–1242 (1996).

    ADS  Article  Google Scholar 

  16. 16

    Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Bethani, I., Skaanland, S. S., Dikic, I. & Acker-Palmer, A. Spatial organization of transmembrane receptor signalling. EMBO J. 29, 2677–2688 (2010).

    Article  Google Scholar 

  18. 18

    Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Sheetz, M. P., Sable, J. E. & Döbereiner, H.-G. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006).

    Article  Google Scholar 

  20. 20

    Weikl, T. R., Asfaw, M., Krobath, H., Rózycki, B. & Lipowsky, R. Adhesion of membranes via receptor–ligand complexes: domain formation, binding cooperativity, and active processes. Soft Matter 5, 3213–3224 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Milstein, O. et al. Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J. Biol. Chem. 283, 34414–34422 (2008).

    Article  Google Scholar 

  22. 22

    Alakoskela, J.-M. et al. Mechanisms for size-dependent protein segregation at immune synapses assessed with molecular rulers. Biophys. J. 100, 2865–2874 (2011).

    ADS  Article  Google Scholar 

  23. 23

    McCall, M. N., Shotton, D. M. & Barclay, A. N. Expression of soluble isoforms of rat CD45. Analysis by electron microscopy and use in epitope mapping of anti-CD45R monoclonal antibodies. Immunology 76, 310–317 (1992).

    Google Scholar 

  24. 24

    Rózycki, B., Lipowsky, R. & Weikl, T. R. Segregation of receptor–ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness. New J. Phys. 12, 095003 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Burroughs, N. J. et al. Boltzmann energy-based image analysis demonstrates that extracellular domain size differences explain protein segregation at immune synapses. PLoS Comput. Biol. 7, e1002076–11 (2011).

    Article  Google Scholar 

  26. 26

    Hu, J., Lipowsky, R. & Weikl, T. R. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Natl Acad. Sci. USA 110, 15283–15288 (2013).

    ADS  Article  Google Scholar 

  27. 27

    Phillips, G. N. Structure and dynamics of green fluorescent protein. Curr. Opin. Struct. Biol. 7, 821–827 (1997).

    Article  Google Scholar 

  28. 28

    CLONTECH Laboratories, Inc. Living Colors, Clontech User Manual 1–51 (1998).

  29. 29

    Rudolph, M. G., Luz, J. G. & Wilson, I. A. Structural and thermodynamic correlates of T cell signaling. Annu. Rev. Biophys. Biomol. Struct. 31, 121–149 (2002).

    Article  Google Scholar 

  30. 30

    Quinn, P., Griffiths, G. & Warren, G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J. Cell Biol. 98, 2142–2147 (1984).

    Article  Google Scholar 

  31. 31

    Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  Google Scholar 

  32. 32

    Theodoly, O., Huang, Z.-H. & Valignat, M.-P. New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction. Langmuir 26, 1940–1948 (2010).

    Article  Google Scholar 

  33. 33

    Yang, F., Moss, L. G. & Phillips, G. N. The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996).

    Article  Google Scholar 

  34. 34

    Krobath, H., Rózycki, B., Lipowsky, R. & Weikl, T. R. Line tension and stability of domains in cell-adhesion zones mediated by long and short receptor-ligand complexes. PLoS ONE 6, e23284 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Wu, Y., Vendome, J., Shapiro, L., Ben-Shaul, A. & Honig, B. Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475, 510–513 (2011).

    Article  Google Scholar 

  36. 36

    Müller, M., Katsov, K. & Schick, M. A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys. J. 85, 1611–1623 (2003).

    Article  Google Scholar 

  37. 37

    Ho, J.-S. & Baumgartner, A. Simulations of fluid self-avoiding membranes. Europhys. Lett. 12, 295–300 (1990).

    ADS  Article  Google Scholar 

  38. 38

    Gompper, G. & Kroll, D. M. Network models of fluid, hexatic and polymerized membranes. J. Phys. Condens. Matter 9, 8795–8834 (1997).

    ADS  Article  Google Scholar 

  39. 39

    Teichmann, S. A. & Chothia, C. Immunoglobulin superfamily proteins in Caenorhabditis elegans. J. Mol. Biol. 296, 1367–1383 (2000).

    Article  Google Scholar 

  40. 40

    Vogel, C. The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Dev. Camb. Engl. 130, 6317–6328 (2003).

    Google Scholar 

  41. 41

    Helle, S. C. J. et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526–2541 (2013).

    Article  Google Scholar 

  42. 42

    Kornmann, B. The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 25, 443–448 (2013).

    Article  Google Scholar 

  43. 43

    Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Rev. Mol. Cell Biol. 9, 543–556 (2008).

    Article  Google Scholar 

  44. 44

    Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986).

    Article  Google Scholar 

  45. 45

    Nye, J. A. & Groves, J. T. Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 24, 4145–4149 (2008).

    Article  Google Scholar 

  46. 46

    Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    ADS  Article  Google Scholar 

  47. 47

    Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

    ADS  Article  Google Scholar 

  48. 48

    Gompper, D. M. K. G. Random surface discretizations and the renormalization of the bending rigidity. J. Phys. Fr. 6, 1305–1320 (1996).

    Google Scholar 

Download references

Acknowledgements

We acknowledge R. Vale and C. Peel for helpful discussions. This work was supported by a Graduate Fellows Research Program grant from the National Science Foundation (NSF) for M.H.B.; a Cancer Research Institute Post-Doctoral Fellowship and a K99 grant from the National Institute of Health (NIH, K99AI093884 and R00AI093884) for K.C.; a Forschungsstipendium of the Deutsche Forschungsgemeinschaft (DFG grant no. We 5004/2) for J.W.; a NIH grant (R37AI043542), a NIGMS Nanomedicine Development Center grant (PN2EY016586) and a Wellcome Trust Principal Research Fellowship to M.L.D.; and a NIH Nanomedicine Development Center grant (PN2EY016546) and an NIH R01 grant (GM114344) to D.A.F. This research was also supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy, FWP number SISGRKN.

Author information

Affiliations

Authors

Contributions

All authors contributed to design of the experiments. E.M.S. and M.H.B. performed experiments. E.M.S., H.S.A. and M.H.B. created unique materials. J.W., M.H.B. and P.L.G. performed simulations and modelling. E.M.S., M.H.B. and D.A.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Eva M. Schmid or Matthew H. Bakalar or Daniel A. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 936 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmid, E., Bakalar, M., Choudhuri, K. et al. Size-dependent protein segregation at membrane interfaces. Nature Phys 12, 704–711 (2016). https://doi.org/10.1038/nphys3678

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing