Letter | Published:

Dynamic particle tracking reveals the ageing temperature of a colloidal glass

Nature Physics volume 2, pages 526531 (2006) | Download Citation

Subjects

Abstract

The glass transition1 is considered to be one of the most fundamental problems in statistical physics. Despite decades of effort, a general consensus on the validity of a universal theory for the large variety of glass systems is lacking2,3—partly because of difficulties encountered in the experimental testing of the theoretical predictions4,5. Here, we present experiments on a colloidal glass made of micrometre-sized particles in a fluid. We investigate the autocorrelation and response function to monitor the ageing of a colloidal glass. At equilibrium, all the observables are stationary, whereas in the out-of-equilibrium glassy state they have an explicit dependence on the age of the system. We find that the transport coefficients scale with the ageing time as a power law, a signature of the slow relaxation. Nevertheless, our analysis reveals that the glassy system has thermalized at a constant temperature independent of the age and warmer than the bath, reflecting the structural rearrangements of cage dynamics. Furthermore, we find a universal scaling law to describe the global and local fluctuations of the observables.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340—342 (1986).

  2. 2.

    in Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter (ed. Barrat, J.-L.et al.) (Springer, Berlin, 2002).

  3. 3.

    Physical Ageing in Amorphous Polymer and Other Materials (Elsevier, Houston, 1978).

  4. 4.

    & Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett. 71, 173—176 (1993).

  5. 5.

    , , & Spin-Glasses and Random Fields (World Scientific, Singapore, 1998).

  6. 6.

    & p-spin-interaction spin-glass models: connections with the structural glass problem. Phys. Rev. B 36, 5388—5397 (1987).

  7. 7.

    , , & Mode-coupling approximations, glass theory and disordered systems. Physica A 226, 243—273 (1996).

  8. 8.

    in Granular Matter: An Interdisciplinary Approach (ed. Mehta, A.) 121—140 (Springer, New York, 1994).

  9. 9.

    et al. Effective temperatures of a driven system near jamming. Phys. Rev. Lett. 89, 095703 (2002).

  10. 10.

    & Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415, 614—617 (2002).

  11. 11.

    , & Experimental measurement of an effective temperature for jammed granular materials. Proc. Natl Acad. Sci. 102, 2299—2304 (2005).

  12. 12.

    A topographic view of supercooled liquids and glass formation. Science 267, 1935—1939 (1995).

  13. 13.

    , & Aging as dynamics in configurations space. Europhys. Lett. 49, 590—596 (2000).

  14. 14.

    & Low-frequency dielectric fluctuations near the glass transition. Europhys. Lett. 43, 308—313 (1998).

  15. 15.

    , & Violation of the fluctuation-dissipation relation during the formation of a colloidal glass. Europhys. Lett. 53, 511—517 (2001).

  16. 16.

    & Fluctuation-dissipation ratio of a spin glass in the aging regime. Phys. Rev. Lett. 88, 257202 (2002).

  17. 17.

    , & Intermittent origin of the large violations of the fluctuation-dissipation relations in an aging polymer glass. Europhys. Lett. 63, 603—609 (2003).

  18. 18.

    & Probing a nonequilibrium Einstein relation in an aging colloidal glass. Phys. Rev. Lett. 93, 160603 (2004).

  19. 19.

    Off-equilibrium fluctuation-dissipation relation in fragile glasses. Phys. Rev. Lett. 79, 3660—3663 (1997).

  20. 20.

    & Fluctuation-dissipation ratio in an aging Lennard-Jones glass. Europhys. Lett. 46, 637—642 (1999).

  21. 21.

    & Nonequilibrium dynamics and fluctuation-dissipation in a sheared fluid. J. Chem. Phys. 116, 6228—6242 (2002).

  22. 22.

    & Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290—293 (2000).

  23. 23.

    , , , & Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627—631 (2000).

  24. 24.

    & Glass transition in colloidal hard spheres: Mode-coupling theory analysis. Phys. Rev. Lett. 70, 2766—2769 (1993).

  25. 25.

    & Direct visualization of ageing in colloidal glasses. J. Phys. Condens. Matter 15, S359—S365 (2003).

  26. 26.

    , , & Aging, phase ordering, and conformal invariance. Phys. Rev. Lett. 87, 265701 (2001).

  27. 27.

    , & Large time out-of-equilibrium dynamics of a manifold in a random potential. Phys. Rev. Lett. 76, 2390—2393 (1996).

  28. 28.

    , & Out-of-equilibrium dynamics of the vortex glass in superconductors. Phys. Rev. Lett. 96, 027001 (2006).

  29. 29.

    , , , & Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827—2830 (1997).

  30. 30.

    , , & Heterogeneous aging in spin glasses. Phys. Rev. Lett. 88, 237201 (2002).

  31. 31.

    , , & A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Rev. Sci. Instrum. 67, 818—827 (1996).

  32. 32.

    et al. Forced motion of a probe particle near the colloidal glass transition. Europhys. Lett. 67, 477—483 (2004).

  33. 33.

    The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 1995).

  34. 34.

    & Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett. 89, 095704 (2002).

Download references

Acknowledgements

We wish to thank M. Shattuck for help in the design of the experiments and J. Brujić and S. Mistry for providing the colloidal particles and illuminating discussions. We acknowledge the financial support from DOE Division of Materials Sciences and Engineering and NSF-CMMT.

Author information

Affiliations

  1. Levich Institute and Physics Department, City College of New York, New York 10031, USA

    • Ping Wang
    • , Chaoming Song
    •  & Hernán A. Makse

Authors

  1. Search for Ping Wang in:

  2. Search for Chaoming Song in:

  3. Search for Hernán A. Makse in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Hernán A. Makse.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys366

Further reading