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Disentangling the role of structure and friction in
shear jamming
H. A. Vinutha1,2 and Srikanth Sastry1,2,3*
Amorphous sphere packings have been intensely investigated
tounderstandmechanical andflowbehaviourofdensegranular
matter and to explore universal aspects of the jamming
transition, from fluid to structurally arrested states. Consid-
erable recent research has focused on anisotropic packings
of frictional grains generated by shear deformation leading
to shear jamming1–5, occurring below the jamming density
for isotropic packings of frictionless grains6–11. Here, with the
aim of disentangling the role of shear-deformation-induced
structures and friction in generating shear jamming, we
computationally study sheared assemblies of frictionless
spheres, over a wide range of densities. We demonstrate
that shear deformation alone leads to the emergence of
geometric features characteristic of jammedpackings,with the
increase of shear strain. We also show that such emergent
geometry, together with friction, leads to mechanically stable,
shear-jammed, packings above a threshold density that lies
well below the isotropic jamming point.

The transition from a fluid to a rigid, or jammed, state occurs
and is of interest in a wide variety of condensed matter, with
glasses, granular packings and colloidal suspensions being well-
known examples. Understanding the transition, occurring variously
when temperature or applied stress is lowered, or the density
raised, requires knowledge of interconnected changes in structure,
thermodynamics, dynamics of structural relaxation and rheology.
A unified and definitive picture of this jamming transition, has
been an actively pursued goal with implications in diverse areas of
research6. Random packings of frictionless hard and soft spheres
have been studied in this general context6–9, and in particular as an
idealized or reference model for granular materials. Much attention
has been focused on behaviour as the jamming point, identified7,8 to
occur as a packing fraction of about 64%, is approached. Although
the density at which random close packing occurs is understood
not to be unique (see, for example, refs 6,9,10 and references
therein), many aspects of behaviour suggesting the jamming point
(denoted henceforth as φJ) to be a critical point11, are robust6. Real
granular materials studied experimentally inevitably deviate from
this idealization, and how these deviations influence their jamming
behaviour has been an active subject of recent research1–5,12. In
particular, jamming of frictional grains under shear deformation,
or shear jamming, has been shown to arise3 over a range of stresses,
and of densities belowφJ, resulting in a density–stress phase diagram
that is substantially different from the frictionless case13. An
extended range of jamming densities has also been discussed earlier
in the context of random loose packing7,8,14, protocol dependence
and memory effects15,16, and specifically for frictional packings1,2.

Given that the structural changes and organization resulting from
the shear deformation, as well as friction are likely to play an
important role in generating shear-jammed packings, elucidating
the role of each of these factors is central to understanding shear
jamming.We address this issue here, through a computational study
of sheared configurations of frictionless soft spheres.

We study a system of N = 2,000 equal-sized frictionless
spheres interacting with a harmonic repulsive potential10,11 over
a wide range of densities, from a packing fraction of 0.26–
0.627, generated (for high densities) by rapid compression of fluid
configurations or decompression of jammed configurations. Shear
deformation is applied through an athermal quasistatic procedure13,
by incrementing strain γxz in small steps (typically of dγ = 5×
10−5, but as low as dγ = 5× 10−12 in cases indicated), followed by
energy minimization at each step. The procedure is applied until a
steady state in which the shear stress σxz (which remains very small)
and the average number of contacts Z reach stable values. Further
details concerning the simulations and analysis are presented in the
Methods and Supplementary Information.

We monitor the evolution of the structure under shear by
considering the pair correlation function g (r), the distribution
of the number of contacts each sphere has, and the free-volume
distribution, each of which exhibit unique signatures near the
jamming point for frictionless sphere packings: the pair correlation
function exhibits a near-contact power-law singularity g (r) ∼
((r/σ)−1)−α with α∼0.45, and singularities in the (split) second
peak17,18. The contact number distribution, which we compute
with and without considering rattlers (rattlers are spheres with
fewer than four contact neighbours), is peaked at Z = 6, the value
required by the isostaticity condition. The free volumes of individual
spheres are computed using an exact algorithm that employs the
Voronoi tessellation, and the free-volume distribution exhibits a
distinct power-law tail for nearly jammed packings, as described
in ref. 19 and references therein. This feature of the free-volume
distribution has also been observed for sheared configurations in
two and three dimensions at high densities close to the jamming
point20. In Fig. 1, we show how these features evolve, for sheared
configurations at different values of strain for packing fraction
φ = 0.58. It is seen that the g (r) develops a near-contact power
law17,18, initially absent, as shear strain is increased (Fig. 1a), and
the split-second peak develops the characteristic twin singularities
(Fig. 1b)18. The peak of the distribution of contact numbers, initially
at zero, evolves to larger values. Finally, the free-volume distribution,
initially exhibiting a form typical of the fluid, develops a power-
law tail characteristic of nearly jammed packings19. Thus, sheared
fluid configurations at φ= 0.58 develop, by all of these measures,
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Figure 1 | Evolution of structure with shear strain. a, Evolution of radial distribution function g(r) for φ=0.58 with strain (γ ). For γ =0.41, the system has
reached the steady state and has a power law in g(r) extending over five decades. b, Radial distribution function showing changes in the second peak as the
system is strained. As we move from the bottom curve to the top curve, the direction of increase in strain, the discontinuity in the second peak develops
and becomes stronger. Each curve is shifted by 1 from the previous curve along the y axis for clarity. c, Distribution of contact number as a function of strain.
At zero strain, there are no contact neighbours and after γ =0.1, particles begin to have contact neighbours. d, Evolution of the free-volume distribution
with strain. The power-law tail in f(Vf) develops around the same strain value for which contact neighbour distribution develops a peak at a non-zero value
of Z. Data for nearly jammed configurations at 0.639 are shown in all panels for comparison (thick green lines).

characteristics of jammed configurations. Figure 2 shows the same
quantities in the steady state, for the range of densities studied,
demonstrating the same behaviour at all densities. Whereas the
near-contact power law in the g (r) is very similar in all cases,
the sub-peak at smaller r in the second peak, as may be expected
from packing considerations, becomes sharper as density increases.
The average number of contacts moves from values less than 4
towards 6 as density increases. Table 1 summarizes information
on contact numbers. The exponent in the free-volume distribution
changes slightly with density, as does the exponent describing the
near contact in g (r). Although these variations require explanation,
themain point is clear: with an increase of shear strain, initially fluid
configurations over a broad range of densities evolve structures that
bear strong resemblance to jammed configurations.

We consider next the statistics of the number of contacts and
the distribution of forces between spheres. In Fig. 3a, we show the
parametric relationship between the mean contact number and the
density that we have of our sheared configurations of frictionless
spheres. The mean contact number decreases from a 6 at the
isotropic frictionless jamming density of ∼0.64, to a value of 4 at
a density ∼0.55. Interestingly, the relationship shown by our data
closely matches those of refs 1,2, for frictional jammed packings.

Table 1 | Statistics of steady-state structural features of
sheared packings.

φ 0.45 0.5 0.54 0.56 0.58 0.59 0.61 0.627
〈Z〉 2.54 3.23 3.88 4.24 4.615 4.81 5.26 5.65
Q6 0.049 0.054 0.052 0.038 0.028 0.027 0.025 0.023
RP 0.795 0.572 0.358 0.262 0.175 0.138 0.078 0.037
〈ZNR〉 4.2 4.38 4.63 4.82 5.042 5.175 5.495 5.785

φ is the density of sheared packings, 〈Z〉 and 〈ZNR〉 are the average coordination number with
and without rattlers, and RP is the rattler (Z≤3) percentage. Q6 is the global bond
orientational parameter computed to check absence of crystallinity.

The presence of a threshold density of 0.55 is further supported
by the distribution of contact forces normalized to their mean
value, P(f ), shown in Fig. 3b. These distributions show a peak at
finite values above φ=0.55, a previously identified characteristic of
jammed packings21–23. These results together indicate the presence
of a threshold density 0.55, and a similarity between the sheared
configurations of frictionless spheres we generate and frictional
jammed packings. This observation has resonance with a number
of other past suggestions, including the occurrence of a glass
transition24, shear thickening25, onset of dilatancy and random loose
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Figure 2 | Structure in the steady state as a function of density. a, Power-law divergence in g(r) for sheared configurations in the steady state. The
power-law exponent value depends slightly on density and is about 0.45 for the nearly jammed case. b, Singularities in the second peak of the g(r) are
observed at all densities at

√
3σ and 2σ , with the feature at

√
3σ becoming stronger as density increases. c, Distribution of contact number. d, Free-volume

distributions. The exponent of the power-law tail indicated by fit lines depends slightly on density. Data for nearly jammed configurations at 0.639 are
shown in all panels for comparison (thick green lines).

packing14. The last of these, random loose packing, however, is
a feature of frictional packings, and we have so far dealt with
frictionless packings. An appealing picture, which we explore below,
is that shear deformation, even in the absence of friction, serves to
induce structures26 at densities above 0.55, and considerably below
φJ, which may be stabilized by friction, when present, to produce
shear-jammed packings.

Before we consider the role of friction, we consider the jamming
properties of the sheared frictionless packings themselves, by
applying the Lubachevsky–Stillinger27 jamming procedure (see
Methods) for a range of compression rates to the configurations
generated at different densities. For slow compression rates, for all
initial densities, the resulting jammed configurations have densities
close to φ=0.64, as seen in Fig. 3c. However, at high compression
rates, we note a difference in behaviour across φ∼0.58. At higher
initial densities, configurations jam at roughly the same density,
but at lower initial densities, the jammed densities are higher. The
possibility of generating jammed configurations above a density
of 0.58, albeit at high compression rates, seems to be related to
the percolation of locally stable structures. In Fig. 3d we show
the percolation probability of spheres with contact number Z ≥
2D=6, for different system sizes N =256, 2,000, 5,000, 20,000. The
connected clusters of such spheres percolate at∼0.58. The suggested
possibility of 0.58 being a threshold that is distinct from that at

density 0.55, and the analysis of other percolation characteristics
that may elucidate the limiting density of 0.55 suggested by other
results above, deserve further analysis but are not pursued further
here. Percolation of D+ 1 coordinated spheres occurs at a much
lower density, data for which are shown in the Supplementary
Information for completeness.

To assess whether sheared frictionless spheres can jam in the
presence of friction, we perform simulations including frictional
contact forces using the discrete-element method (DEM). We
subject the steady-state sheared configurations to a strain step
(dγ =5×10−5) in addition to slight compression (see Methods and
Supplementary Information), and evolve them using DEM, varying
the friction coefficient µ and the damping coefficients ζn and ζt
(see Methods and Supplementary Information), and monitor the
evolution of the structure. We initially choose damping coefficients
ζn= ζt =0. Although the spheres do not move significantly during
any of these simulations (with mean squared displacements less
than 10−4), for small enough friction coefficients at any density,
the shear stress and the average contact number decay rapidly to
zero indicating that the structure is unjammed (see Supplementary
Information). The threshold friction coefficient is identified at
each density beyond which the sheared configurations remain
jammed. For densities above φ = 0.58, sheared configurations
remain jammed, but below, the configurations unjam for the studied
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Figure 3 | Structural and mechanical indicators suggesting frictional jamming above φ=0.55. a, Parametric plot showing the average contact number
versus density for sheared configurations, compared with that of frictional packings obtained in refs 1,2. The average contact number becomes greater than
4 for φ≥0.55. b, Distributions of contact forces for di�erent densities, which exhibit a peak at finite values for φ≥0.55. c, Configurations subjected to the
Lubachevsky–Stillinger jamming protocol at di�erent compression rates. Plotted are the resulting densities of jammed configurations indicating a change of
behaviour for φ>0.58. Compression rates in the legend are indicated by ‘CR’. d, Percolation of jammed (Z≥2D) spheres in the sheared configurations
indicating a percolation threshold at φ=0.585, shown for di�erent system sizes.

range of friction coefficients. Figure 4a shows the threshold friction
coefficients obtained, which compare reasonably well to values
obtained in isotropic frictional simulations in ref. 2. Figure 4b
shows the fraction of initial contacts that survive as a function of
time, for large friction coefficients well above the threshold value,
with steady-state configurations generated with dγ = 10−12. It is
seen that most of the contacts remain intact for densities above
φ = 0.57, but they decay to 0 below. A closer agreement with
isotropic frictional simulations in ref. 2 is obtained by the inclusion
of damping (as done in ref. 2), as shown in Fig. 4a. For ζn = 3
and 30 (ζt = (1/2)ζn) respectively, frictional jamming occurs down
to φ= 0.58 and 0.57. The mean contact number Z , at the lower
density limit to frictional jamming reaches 4 in all of these cases
as shown in Fig. 4c. With a suitable procedure, we therefore expect
the lower density limit to frictional jamming to be φ = 0.55, at
which we obtain sheared frictionless packings with Z=4. Thus, the
sheared configurations of frictionless spheres we generate jam in
the presence of friction above a threshold friction coefficient that
closely matches those of isotropic frictional packings2, above the
threshold density of 0.55. Shear-jammed configurations form from
sheared steady-state configurations with negligible rearrangement,
in contrast to isotropic frictional jamming, and are anisotropic, as

shown in Fig. 4d. The anisotropy (defined from the fabric tensor;
see Methods) of the shear-jammed configurations is identical to the
sheared steady-state configurations in the range of densities where
we obtain shear jamming. As an independent test, to be described
elsewhere, we solve the force balance equations for the steady-state
configurations using forces generated by DEM simulations as initial
guesses, to obtain forces needed for force balance from geometric
information alone.

Although many questions are suggested from the results above
that must be investigated further, they show that shear deformation
of spheres even in the absence of friction at densities well below
the isotropic jamming point leads to the emergence of geometric
features resembling jammed packings, with a threshold density that
may be identified with the random-loose-packing limit that may be
identified with the case of infinite friction. The force distributions
and the relationship between the packing fraction and contact
number in the steady state support the comparison of the sheared
configurations above the threshold density with frictional jammed
packings with varying friction. Our results thus serve to disentangle
the role of structure formation under shear and friction in the
generation of shear jamming phenomenology. They also identify
the lower limit of shear jamming with random loose packing.
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Figure 4 | Frictional jamming of sheared steady-state configurations. a, Threshold friction coe�cient as a function of the density, beyond which sheared
steady-state structures jam, for damping coe�cients ζn=0,3,30. Also shown for comparison are results for frictional packings obtained in ref. 2.
b, Fraction of contact pairs initially present that survive as a function of time, for friction coe�cients above the threshold (for density φ≥0.57; for φ=0.55
and 0.58 the friction coe�cient is 100), and ζn=3, η=3. c, Comparison of coordination number Z of the initial structure and the final structure obtained
from frictional dynamics after applying a strain of1γ =5× 10−5. Curves labelled ζn=0,3,30 are for steady-state configurations with dγ = 10−5, just above
the threshold friction coe�cient, and no solvent friction, whereas configurations for the curve labelled ζn=3,η=3 are obtained with dγ = 10−12, for friction
coe�cients well above the threshold, and finite solvent friction η. The contact number is close to, but di�erent from, the initial value for densities above
φ=0.57, whereas they are zero for lower densities (except the case ζn=3,η=3, where overdamping results in cessation of particle motion before all
contacts are lost). d, Fabric anisotropy as a function of packing density for steady-state (SS), shear-jammed (SJ) and isotropic frictional jammed (ISO)
configurations. The anisotropy of steady-state and shear-jammed packings is the same.

Whether the same kind of structure formation can arise in isotropic
compression12 rather than shear, analysis of the anisotropies in
sheared structures, and the role of finite shear rates present some
obvious questions to pursue in future work. It is also of interest
to investigate further the similarities and differences between our
results and those for shear-jammed states obtained in frictionless
packings16 above a limit density for isotropic jamming.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The model system we study is composed of N =2,000 frictionless spheres
interacting with soft harmonic repulsive potential, v(r)=(ε/2)(1−(r/σ))2, where
ε and σ , the interaction strength and size of the spheres, define the reduced units
used throughout. The initial configurations are hard-sphere configurations,
obtained at high densities in two ways: starting from an equilibrated hard-sphere
fluid at initial density 0.45, a fast initial compression is effected using a Monte
Carlo simulation until the desired density is reached for the initial configurations;
starting from packings at φj, obtained by the Lubachevsky–Stillinger jamming
protocol27, lower density configurations are obtained by rescaling the simulation
box size. The Lubachevsky–Stillinger procedure involves event-driven molecular
dynamics of hard spheres, whose radii are inflated at a specified rate. The
procedure terminates when the radii cannot be increased by any finite amount
without the next collision of a pair of spheres intervening, or when the collision
rate diverges. In practice, the procedure is terminated when the sphere radii do not
change by more than 10−10 between successive collisions.

Athermal quasistatic simulations are performed using LAMMPS (ref. 28),
which involves the following steps: affine transformation of coordinates by a small
step with dγ =5×10−5; energy minimization using the conjugate-gradient
method, employing Lees–Edwards periodic boundary conditions. This procedure
is used until steady states are reached. We also use a strain step of dγ =5×10−12 to
shear steady-state configurations further to validate our contact definition (see
below), to evaluate contact forces and to perform frictional simulations.

Data shown are averaged over 50–70 initial independent configurations, except
those in Fig. 4, which are averaged over 10 configurations, Fig. 3b, which are
averaged for 20 configurations, and Fig. 3d, which are averaged over
1,000 configurations.

We use a cutoff of∼10−5, which is the distance at which g (r) deviates
from the power law, to define contact neighbours to compute the contact number
Z . This cutoff is a precision limit that is dependent on the strain step used in
athermal quasistatic simulations, as we show in the Supplementary Information by
considering various dγ down to 5×10−12. To have a consistent definition of contact,
we compress configurations by rescaling the diameter of the spheres (by∼10−5 when
dγ =5×10−5 and∼10−12 when dγ =5×10−12 and so on) so that all neighbour
pairs identified as contact neighbours have finite contact forces. As this equivalence
becomes more exact for smaller strain steps, we consider steady-state configurations
with strain step dγ =5×10−12 when evaluating forces between contact neighbours
(Fig. 3b). The data for frictional simulations (Fig. 4) are for dγ =5×10−5. Data
shown in the Supplementary Information validate in detail the procedure we adopt.

To generate jammed configurations using the Lubachevsky–Stillinger
procedure, the small overlaps in the sheared configurations are removed by
decreasing the diameter by a small amount (∼10−9), which is then increased to
unity through the Lubachevsky–Stillinger protocol with a fast compression rate of
0.1, involving negligible displacements of spheres (∼10−16). We use the steady-state
configurations to calculate free volumes of the particles using the algorithm
described in ref. 19.

To test the stability of steady-state sheared structures in the presence of friction,
we use the discrete-element method29 to model contact interactions between
particles through a repulsive linear spring–dashpot model. The model, described
further in the Supplementary Information, involves normal and tangential spring
constants κn, κt , damping coefficients ζn, ζt=(1/2)ζn, and the friction coefficient µ
as parameters. The model parameters used are κn=κt=2 and the normal contact
damping ζn=0,3,30. The contacts present when friction is turned on provide the
initial condition for the contact history. Tangential forces, initially zero, are
generated by subsequent tangential displacements during the time the contact
remains unbroken. At each contact, the Coulomb yield criterion is obeyed; that is,
Ft ≤µFn, where µ is the friction coefficient, which is initially varied from 0.01 to
100 in multiples of 10 to bracket the threshold value beyond which configurations
are jammed. Threshold µ values are refined further by considering a finer grid of
values. Configurations identified as jammed exhibit a finite shear modulus, which
we illustrate in one case in the Supplementary Information.

Anisotropy of initial and jammed structures for isotropic and sheared
steady-state initial conditions is calculated, using the fabric tensor, defined as

R̂=
1
N
6i 6=j

rij
|rij|
⊗

rij
|rij|

(1)

where rij are distance vectors between contact neighbours. The normalized
difference between the largest eigenvalue C1 to the smallest C3,
(C1−C3)/(C1+C2+C3) defines the fabric anisotropy. The normalization
(C1+C2+C3) equals the mean number of contacts per sphere.
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