Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

Abstract

At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal–oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth and structural characterization.
Figure 2: Interfacial charge transfer in LaNiO3/GdTiO3.
Figure 3: Tuning interfacial charge transfer by the rare earth in the nickelate.
Figure 4: Covalence versus ionicity.
Figure 5: Induced magnetic moment in the nickelates.
Figure 6: Role of covalence on magnetism.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  2. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  ADS  Google Scholar 

  3. Khomskii, D. Unusual valence, negative charge-transfer gaps and self-doping in transition-metal compounds. Lith. J. Phys. 37, 65–72 (1997).

    Google Scholar 

  4. Mizokawa, T. et al. Electronic structure of PrNiO3 studied by photoemission and x-ray-absorption spectroscopy: band gap and orbital ordering. Phys. Rev. B 52, 13865–13873 (1995).

    Article  ADS  Google Scholar 

  5. Abbate, M. et al. Electronic structure and metal–insulator transition in LaNiO3−δ . Phys. Rev. B 65, 155101 (2002).

    Article  ADS  Google Scholar 

  6. Ushakov, A., Streltsov, S. V. & Khomskii, D. I. Crystal field splitting in correlated systems with negative charge-transfer gap. J. Phys. Condens. Matter 23, 445601 (2011).

    Article  ADS  Google Scholar 

  7. Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 9, 1679–1707 (1997).

    Article  ADS  Google Scholar 

  8. Medarde, M. et al. RNiO3 perovskites (R = Pr, Nd): nickel valence and the metal–insulator transition investigated by x-ray-absorption spectroscopy. Phys. Rev. B 46, 14975–14984 (1992).

    Article  ADS  Google Scholar 

  9. Johnston, S., Mukherjee, A., Elfimov, I., Berciu, M. & Sawatzky, G. A. Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal–insulator transition. Phys. Rev. Lett. 112, 106404 (2014).

    Article  ADS  Google Scholar 

  10. Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B 61, 11263 (1999).

    Article  ADS  Google Scholar 

  11. Park, H., Millis, A. J. & Marianetti, C. A. Site-selective Mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109, 156402 (2012).

    Article  ADS  Google Scholar 

  12. Weber, C., Yee, C.-H., Haule, K. & Kotliar, G. Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy. Europhys. Lett. 100, 37001 (2012).

    Article  ADS  Google Scholar 

  13. Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article  ADS  Google Scholar 

  14. Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    Article  ADS  Google Scholar 

  15. Zhang, F. & Rice, T. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  Google Scholar 

  16. Eskes, H. & Sawatzky, G. A. Tendency towards local spin compensation of holes in the high-Tc copper compounds. Phys. Rev. Lett. 61, 1415–1418 (1988).

    Article  ADS  Google Scholar 

  17. Chen, H., Millis, A. J. & Marianetti, C. A. Engineering correlation effects via artificially designed oxide superlattices. Phys. Rev. Lett. 111, 116403 (2013).

    Article  ADS  Google Scholar 

  18. Conti, G. et al. Band offsets in complex-oxide thin films and heterostructures of SrTiO3/LaNiO3 and SrTiO3/GdTiO3 by soft and hard X-ray photoelectron spectroscopy. J. Appl. Phys. 113, 143704 (2013).

    Article  ADS  Google Scholar 

  19. Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

    Article  ADS  Google Scholar 

  20. Grisolia, M. N. et al. Structural, magnetic, and electronic properties of GdTiO3 Mott insulator thin films grown by pulsed laser deposition. Appl. Phys. Lett. 105, 172402 (2014).

    Article  ADS  Google Scholar 

  21. Bruno, F. Y. et al. Rationalizing strain engineering effects in rare-earth nickelates. Phys. Rev. B 88, 195108 (2013).

    Article  ADS  Google Scholar 

  22. Fujimori, A. et al. Doping-induced changes in the electronic structure of LaxSr1−xTiO3: limitation of the one-electron rigid-band model and the Hubbard model. Phys. Rev. B 46, 9841–9844 (1992).

    Article  ADS  Google Scholar 

  23. Sakai, E. et al. Gradual localization of Ni 3d states in LaNiO3 ultrathin films induced by dimensional crossover. Phys. Rev. B 87, 075132 (2013).

    Article  ADS  Google Scholar 

  24. Middey, S. et al. Polarity compensation in ultra-thin films of complex oxides: the case of a perovskite nickelate. Sci. Rep. 4, 6819 (2014).

    Article  Google Scholar 

  25. Lucovsky, G., Miotti, L., Bastos, K. P., Adamo, C. & Schlom, D. G. Spectroscopic detection of hopping induced mixed valence for Ti and Sc in GdSc1−xTixO3 for x greater than the percolation threshold of 0.16. J. Vac. Sci. Technol. B 29, 01AA02 (2011).

    Article  Google Scholar 

  26. Mochizuki, M. & Imada, M. Orbital physics in the perovskite Ti oxides. New J. Phys. 6, 154 (2004).

    Article  ADS  Google Scholar 

  27. Lesne, E. et al. Suppression of the critical thickness threshold for conductivity at the LaAlO3/SrTiO3 interface. Nature Commun. 5, 4291 (2014).

    Article  ADS  Google Scholar 

  28. Kleibeuker, J. E. et al. Electronic reconstruction at the isopolar LaTiO3/LaFeO3 interface: an X-ray photoemission and density-functional theory study. Phys. Rev. Lett. 113, 237402 (2014).

    Article  ADS  Google Scholar 

  29. Piamonteze, C. et al. Spin-orbit-induced mixed-spin ground state in RNiO3 perovskites probed by x-ray absorption spectroscopy: insight into the metal-to-insulator transition. Phys. Rev. B 71, 020406 (2005).

    Article  ADS  Google Scholar 

  30. Liu, J. et al. Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices. Phys. Rev. B 83, 161102 (2011).

    Article  ADS  Google Scholar 

  31. Freeland, J. W., van Veenendahl, M. & Chakhalian, J. Evolution of electronic structure across the rare-earth RNiO3 series. J. Electr. Spectr. http://dx.doi.org/10.1016/j.elspec.2015.07.006 (2015).

  32. Suntivich, J. et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge x-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856–1863 (2014).

    Article  Google Scholar 

  33. Marianetti, C., Kotliar, G. & Ceder, G. Role of hybridization in NaxCoO2 and the effect of hydration. Phys. Rev. Lett. 92, 196405 (2004).

    Article  ADS  Google Scholar 

  34. Liu, J. et al. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nature Commun. 4, 2714 (2013).

    Article  ADS  Google Scholar 

  35. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 . Phys. Rev. 100, 564–573 (1955).

    Article  ADS  Google Scholar 

  36. Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).

    Article  ADS  Google Scholar 

  37. Shiratsuchi, Y. et al. Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system. Phys. Rev. Lett. 109, 077202 (2012).

    Article  ADS  Google Scholar 

  38. Ungureanu, M. et al. Using a zero-magnetization ferromagnet as the pinning layer in exchange-bias systems. Phys. Rev. B 82, 174421 (2010).

    Article  ADS  Google Scholar 

  39. Nogués, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Article  ADS  Google Scholar 

  40. Ali, M. et al. Exchange bias using a spin glass. Nature Mater. 6, 70–75 (2007).

    Article  ADS  Google Scholar 

  41. Gibert, M., Zubko, P., Scherwitzl, R., Iñiguez, J. & Triscone, J.-M. Exchange bias in LaNiO3–LaMnO3 superlattices. Nature Mater. 11, 195–198 (2012).

    Article  ADS  Google Scholar 

  42. Goodenough, J. B. Covalent exchange vs superexchange in two nickel oxides. J. Solid State Chem. 127, 126–127 (1996).

    Article  ADS  Google Scholar 

  43. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  44. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  ADS  Google Scholar 

  45. Rueff, J.-P. et al. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. J. Synchrotron Radiat. 22, 175–179 (2015).

    Article  Google Scholar 

  46. Yang, S. H. et al. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: total reflection, standing-wave excitation, and resonant effects. J. Appl. Phys. 113, 073513 (2013).

    Article  ADS  Google Scholar 

  47. Chiam, S. Y. et al. Effects of electric field in band alignment measurements using photoelectron spectroscopy. Surf. Interface Anal. 44, 1091–1095 (2012).

    Article  Google Scholar 

  48. Tanaka, H. et al. Nondestructive estimation of depletion layer profile in Nb-doped SrTiO3/(La, Ba)MnO3 heterojunction diode structure by hard x-ray photoemission spectroscopy. Appl. Phys. Lett. 98, 14–17 (2011).

    Article  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  51. Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  52. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, 5467–5471 (1995).

    Article  ADS  Google Scholar 

  53. Bristowe, N. C., Varignon, J., Fontaine, D., Bousquet, E. & Ghosez, P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nature Commun. 6, 6677 (2015).

    Article  ADS  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Watanabe for the Digital Micrograph PCA plug-in, F. Y. Bruno for his assistance at an early stage of this project and V. Garcia and R. Mattana for useful comments. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement #312284. Research at CNRS/Thales was supported by the ERC Consolidator Grant #615759 ‘MINT’ and the region Île-de-France DIM ‘Oxymore’ (project NEIMO). Research at ORNL was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at UCM was supported by grants MAT2014-52405-C02-01 and Consolider Ingenio 2010—CSD2009-00013 (Imagine), by CAM through grant CAM S2013/MIT-2740 and by the ERC Starting Investigator Grant #239739 STEMOX. J.S. thanks the Institute of Physics of CNRS for supporting his stay at CNRS/Thales. We acknowledge synchrotron SOLEIL (proposal no. 20140194) and HZB for provision of synchrotron radiation facilities and the Labex PALM.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and M.N.G. designed and conceived the experiment. M.N.G. carried out sample growth and characterization. G.S.-S. and M.V. carried out STEM and EELS analysis. M.N.G., S.V., E.W., E.S., R.A., A.A., A.B., M.B. and J.S. carried out XAS, XRMS and XMCD measurements and data analysis. M.N.G., J.E.R., J.-P.R., J.S. and M.B. carried out photoemission measurements and data analysis. J.V. performed first-principles calculations. M.B., M.N.G. and J.S. wrote the article with inputs from all authors.

Corresponding author

Correspondence to M. Bibes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grisolia, M., Varignon, J., Sanchez-Santolino, G. et al. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces. Nature Phys 12, 484–492 (2016). https://doi.org/10.1038/nphys3627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing