Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

As hot as it gets

Sustaining and measuring high temperatures in fusion plasmas is a challenging task that requires different heating systems and diagnostic tools. Information on the spatial distribution of temperature is one of the key elements for improving and controlling plasma performance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a tokamak.


Figure 2: Different sources of heating in a tokamak.
Figure 3: Temperature profile measurements obtained with different methods.


  1. Cowley, S. Physics World 47–51 (October 2010).

  2. Artsimovich, L. A. Nucl. Fusion 12, 215–252 (1972).

    Article  Google Scholar 

  3. Gil, C. Fusion Sci. Technol. 56, 1219–1252 (2009).

    Article  Google Scholar 

  4. Donné, A. J. H. Nucl. Fusion 47, S337–S384 (2007).

    Article  Google Scholar 

  5. von Hellermann M. G. et al. Rev. Sci. Instrum. 61, 3479–3486 (1990).

    Article  ADS  Google Scholar 

  6. Ince-Cushman, A. et al. Rev. Sci. Instrum. 79, 10E302 (2008).

    Article  Google Scholar 

  7. Bitter, M., Fraenkel, B., Hill, K. W., Hsuan, H. & von Goeler, S. Rev. Sci. Instrum. 66, 530–532 (1995).

    Article  ADS  Google Scholar 

  8. Platz, P., Cornille, M. & Dubau, J. J. Phys. B 29, 3787–3797 (1996).

    Article  ADS  Google Scholar 

  9. Eikenberry, E. F. et al. Nucl. Instrum. Methods Phys. Res. A 501, 260–266 (2003).

    Article  ADS  Google Scholar 

  10. Hutchinson, I. H. Principles of Plasma Diagnostics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  11. Peacock, N. J., Robinson, D. C., Forrest, M. J., Wilcock, P. D. & Sannikov, V. V. Nature 224, 488–190 (1969).

    Article  ADS  Google Scholar 

  12. Gibson, K. J. et al. Plasma Phys. Control. Fusion 52, 124041 (2010).

    Article  ADS  Google Scholar 

  13. Ségui, J. L. et al. Rev. Sci. Instrum. 76, 123501 (2005).

    Article  ADS  Google Scholar 

  14. Park, H. et al. Rev. Sci. Instrum. 74, 4239–4262 (2003).

    Article  ADS  Google Scholar 

  15. Connor, J. et al. Nucl. Fusion 44, R1–R49 (2004).

    Article  Google Scholar 

  16. Litaudon, X. et al. Plasma Phys. Control. Fusion 40, A251–A268 (1998).

    Article  ADS  Google Scholar 

  17. Tresset, G. et al. Nucl. Fusion 42, 520–526 (2002).

    Article  ADS  Google Scholar 

  18. Waltz, R. E., Kerbel, G. D. & Milovich J. Phys. Plasmas 1, 2229–2244 (2004).

    Article  ADS  Google Scholar 

  19. Mazon, D. et al. Plasma Phys. Control. Fusion 44, 1087–1104 (2002).

    Article  ADS  Google Scholar 

  20. Ongena, J. & Van Oost, G. Natuur Techniek 63, 2–17 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Didier Mazon, Christel Fenzi or Roland Sabot.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazon, D., Fenzi, C. & Sabot, R. As hot as it gets. Nature Phys 12, 14–17 (2016).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing