Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae


Spontaneous mixing of fluids at unstably stratified interfaces occurs in a wide variety of atmospheric, oceanic, geophysical and astrophysical flows. The Rayleigh–Taylor instability, a process by which fluids seek to reduce their combined potential energy, plays a key role in all types of fusion. Despite decades of investigation, fundamental questions regarding turbulent Rayleigh–Taylor flow persist, namely: does the flow forget its initial conditions, is the flow self-similar, what is the scaling constant, and how does mixing influence the growth rate? Here, we show results from a large direct numerical simulation addressing such questions. The simulated flow reaches a Reynolds number of 32,000, far exceeding that of all previous Rayleigh–Taylor simulations. We find that the scaling constant cannot be found by fitting a curve to the width of the mixing layer (as is common practice) but can be obtained by recourse to the similarity equation for the expansion rate of the turbulent region. Moreover, the ratio of kinetic energy to released potential energy is not constant, but exhibits a weak Reynolds number dependence, which might have profound consequences for flame propagation models in type Ia supernova simulations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rayleigh–Taylor instability in the fully turbulent regime.
Figure 2: Rayleigh–Taylor energy spectra.
Figure 3: Taylor, λi(0,t), and Kolmogorov, ηi(0,t), microscales normalized by their theoretical dependence on mixing width, h(t).
Figure 4: Comparison of measurement techniques for RTI growth parameter, α, including Reynolds number (Re) dependence.
Figure 5: RTI energy budget.
Figure 6: Interfacial surface area and state of mixing in RTI flow.


  1. Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. R. Math. Soc. 14, 170–177 (1883).

    MathSciNet  MATH  Google Scholar 

  2. Taylor, G. I. The instability of liquid surfaces when accelerated in a direction perpendicular to their plane. Proc. R. Soc. London A 201, 192–196 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  3. Bateman, G. MHD Instabilities (MIT Press, Cambridge, Massachusetts, 1979).

    Book  Google Scholar 

  4. Petrasso, R. D. Rayleigh’s challenge endures. Nature 367, 217–218 (1994).

    Article  ADS  Google Scholar 

  5. Taleyarkhan, R. P. et al. Evidence for nuclear emissions during acoustic cavitation. Science 295, 1868–1873 (2002).

    Article  ADS  Google Scholar 

  6. Burrows, A. Supernova explosions in the universe. Nature 403, 727–733 (2000).

    Article  ADS  Google Scholar 

  7. Zingale, M., Woosley, S. E., Rendleman, C. A., Day, M. S. & Bell, J. B. Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in type Ia supernovae. Astrophys. J. 632, 1021–1034 (2005).

    Article  ADS  Google Scholar 

  8. Zingale, M., Woosley, S. E., Bell, J. B., Day, M. S. & Rendleman, C. A. The physics of flames in type Ia supernovae. J. Phys. Conf. 16, 405–409 (2005).

    Article  ADS  Google Scholar 

  9. Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y. & Rosenberg, R. O. Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science 299, 77–81 (2003).

    Article  ADS  Google Scholar 

  10. Schmidt, W., Niemeyer, J. C., Hillebrandt, W. & Röpke, F. K. A localised subgrid scale model for fluid dynamical simulations in astrophysics: II. Application to type Ia supernovae. Astron. Astrophys. 450, 283–294 (2006).

    Article  ADS  Google Scholar 

  11. Mellado, J. P., Sarkar, S. & Zhou, Y. Large-eddy simulation of Rayleigh-Taylor turbulence with compressible miscible fluids. Phys. Fluids 17, 076101 (2005).

    Article  ADS  Google Scholar 

  12. Chandrasekhar, S. The character of the equilibrium of an incompressible heavy viscous fluid of variable density. Proc. Camb. Phil. Soc. 51, 162–178 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  13. Duff, R. E., Harlow, F. H. & Hirt, C. W. Effects of diffusion on interface instability between gases. Phys. Fluids 5, 417–425 (1962).

    Article  ADS  Google Scholar 

  14. Timmes, F. X. & Woosley, S. E. The conductive propagation of nuclear flames. I. Degenerate C+O and O+Ne+Mg white dwarfs. Astrophys. J. 396, 649–667 (1992).

    Article  ADS  Google Scholar 

  15. Peters, N. Turbulent Combustion (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  16. Dimotakis, P. E. The mixing transition in turbulence. J. Fluid Mech. 409, 69–97 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  17. Nomoto, K., Iwamoto, K. & Kishimoto, N. Type Ia supernovae; their origin and possible applications in cosmology. Science 276, 1378–1382 (1997).

    Article  ADS  Google Scholar 

  18. Ristorcelli, J. R. & Clark, T. T. Rayleigh-Taylor turbulence: Self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213–253 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  19. Cook, A. W., Cabot, W. & Miller, P. L. The mixing transition in Rayleigh-Taylor instability. J. Fluid Mech. 511, 333–362 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  20. Dimonte, G. et al. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration. Phys. Fluids 16, 1668–1693 (2004).

    Article  ADS  Google Scholar 

  21. Dimonte, G., Ramaprabhu, P., Youngs, D. L., Andrews, M. J. & Rosner, R. Recent advances in the turbulent Rayleigh-Taylor instability. Phys. Plasmas 12, 056301 (2005).

    Article  ADS  Google Scholar 

  22. Ramaprabhu, P., Dimonte, G. & Andrews, M. J. A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability. J. Fluid Mech. 536, 285–319 (2005).

    Article  ADS  Google Scholar 

  23. Cook, A. W. & Dimotakis, P. E. Transition stages of Rayleigh-Taylor instability between miscible fluids. J. Fluid Mech. 443, 69–99 (2001).

    Article  ADS  Google Scholar 

  24. Woosley, S. E., Wunsch, S. & Kuhlen, M. Carbon ignition in type Ia supernovae: An analytic model. Astrophys. J. 607, 921–930 (2004).

    Article  ADS  Google Scholar 

  25. Damköhler, G. Der einfluß der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. 46, 601–652 (1940).

    Google Scholar 

  26. Hillebrandt, W. & Niemeyer, J. C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).

    Article  ADS  Google Scholar 

  27. Schmidt, W., Niemeyer, J. C. & Hillebrandt, W. A localised subgrid scale model for fluid dynamical simulations in astrophysics: I. Theory and numerical tests. Astron. Astrophys. 450, 265–281 (2006).

    Article  ADS  Google Scholar 

  28. Pocheau, A. Scale invariance in turbulent front propagation. Phys. Rev. E 49, 1109–1122 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  29. Khokhlov, A. M., Oran, E. S. & Wheeler, J. C. Scaling in buoyancy-driven turbulent premixed flames. Combust. Flame 105, 28–34 (1996).

    Article  Google Scholar 

  30. Röpke, F. K., Niemeyer, J. C. & Hillebrandt, W. On the small-scale stability of thermonuclear flames in type Ia supernovae. Astrophys. J. 588, 952–961 (2003).

    Article  ADS  Google Scholar 

  31. Tennekes, H. & Lumley, J. L. A First Course in Turbulence (MIT Press, Cambridge, Massachusetts, 1972).

    MATH  Google Scholar 

Download references


We wish to thank B. J. Miller, M. L. Welcome and P. L. Williams for assistance with code optimization, and H. R. Childs for help in creating Figs 1 and 6. This work was carried out under the auspices of the US Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to William H. Cabot or Andrew W. Cook.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cabot, W., Cook, A. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nature Phys 2, 562–568 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing