Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction

Abstract

The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Intensity diffraction pattern induced by a fixed, predefined aperture.
Figure 2: 3D PIC simulations of laser diffraction and plasma electron density produced by the relativistic plasma aperture.
Figure 3: 3D PIC simulation results for circularly polarized light.
Figure 4: Experiment and 3D PIC simulation results for the electron density distribution.
Figure 5: 3D EPOCH simulation with laser focal spot size equal to 1.5 μm and 6 μm.
Figure 6: Magnetic field structure driven by circularly polarized light.

References

  1. Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  2. Pukhov, A. & Meyer-ter-Vehn, J. Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975–3978 (1996).

    Article  ADS  Google Scholar 

  3. Kaluza, M. C. et al. Measurement of magnetic-field structures in a laser-wakefield accelerator. Phys. Rev. Lett. 105, 115002 (2010).

    Article  ADS  Google Scholar 

  4. Thomas, A. G. R. et al. Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators. Phys. Rev. Lett. 98, 095004 (2007).

    Article  ADS  Google Scholar 

  5. Daido, H. et al. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).

    Article  ADS  Google Scholar 

  6. Macchi, A. et al. Ion acceleration by superintense laser–plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013).

    Article  ADS  Google Scholar 

  7. Ganeev, R. A. High-order harmonic generation in a laser plasma: a review of recent achievements. J. Phys. B 40, R213–R253 (2007).

    Article  ADS  Google Scholar 

  8. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    Article  ADS  Google Scholar 

  9. Guerin, S. et al. Propagation of ultraintense laser pulses through overdense plasma layers. Phys. Plasmas 3, 2693–2701 (1996).

    Article  ADS  Google Scholar 

  10. Fuchs, J. et al. Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 2326–2329 (1998).

    Article  ADS  Google Scholar 

  11. Cattani, F. et al. Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas. Phys. Rev. E 62, 1234–1237 (2000).

    Article  ADS  Google Scholar 

  12. Tushentsov, M. et al. Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions. Phys. Rev Lett. 87, 275002 (2001).

    Article  Google Scholar 

  13. Willingale, L. et al. Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125002 (2009).

    Article  ADS  Google Scholar 

  14. Eremin, V. I. et al. Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: why it occurs and its use for ultrashort electron bunch generation. Phys. Plasmas 17, 043102 (2010).

    Article  ADS  Google Scholar 

  15. Vshivkov, V. A. et al. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 2727–2741 (1998).

    Article  ADS  Google Scholar 

  16. Reed, S. A. et al. Relativistic plasma shutter for ultraintense laser pulses. Appl. Phys. Lett. 94, 201117 (2009).

    Article  ADS  Google Scholar 

  17. Wang, H. Y. et al. Laser shaping of relativistic intense, short Gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002 (2011).

    Article  ADS  Google Scholar 

  18. Palaniyappan, S. et al. Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Phys. 8, 763–769 (2012).

    Article  ADS  Google Scholar 

  19. Stark, D. J. et al. Relativistic plasma polarizer: impact of temperature anisotropy on relativistic transparency. Phys. Rev. Lett. 115, 025002 (2015).

    Article  ADS  Google Scholar 

  20. Henig, A. et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002 (2009).

    Article  ADS  Google Scholar 

  21. Macchi, A. et al. ‘Light Sail’ acceleration reexamined. Phys. Rev. Lett. 103, 085003 (2009).

    Article  ADS  Google Scholar 

  22. Dromey, B. et al. Coherent synchrotron emission from electron nanobunches formed in relativistic laser–plasma interactions. Nature Phys. 8, 804–808 (2012).

    Article  ADS  Google Scholar 

  23. Kiefer, D. et al. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nature Commun. 4, 1763 (2013).

    Article  ADS  Google Scholar 

  24. Yeung, M. et al. Dependence of laser-driven coherent synchrotron emission efficiency on pulse ellipticity and implications for polarization gating. Phys. Rev. Lett. 112, 123902 (2014).

    Article  ADS  Google Scholar 

  25. Fresnel, A. Memoire sur la diffraction de la lumiere. Ann. Chim. Phys. 1, 129 (1816).

    Google Scholar 

  26. Stratton, J. A. & Chu, L. J. Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939).

    Article  ADS  Google Scholar 

  27. Guha, S. & Gillen, G. Description of light propagation through a circular aperture using nonparaxial vector diffraction theory. Opt. Express 13, 1424–1447 (2005).

    Article  ADS  Google Scholar 

  28. Hooker, C. J. et al. The Astra Gemini project—A dual-beam petawatt Ti:sapphire laser system. J. Physique IV 133, 673–677 (2006).

    ADS  Google Scholar 

  29. Yin, L. et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003 (2011).

    Article  ADS  Google Scholar 

  30. Gray, R. J. et al. Azimuthal asymmetry in collective electron dynamics in relativistically transparent laser-foil interactions. New J. Phys. 16, 093027 (2014).

    Article  ADS  Google Scholar 

  31. Sgattoni, A. et al. Laser-driven Rayleigh–Taylor instability: plasmonic effects and three-dimensional structures. Phys. Rev. E 91, 013106 (2015).

    Article  ADS  Google Scholar 

  32. Tamburini, M. et al. Radiation-pressure-dominant acceleration: polarization and radiation reaction effects and energy increase in three-dimensional simulations. Phys. Rev. E 85, 016407 (2012).

    Article  ADS  Google Scholar 

  33. Asada, K. et al. A helical magnetic field in the jet of 3C 273. Publ. Astron. Soc. Jpn 54, L39–L43 (2002).

    Article  ADS  Google Scholar 

  34. Ghisellini, G. et al. Structured jets in TeV BL Lac objects and radiogalaxies. Astron. Astrophys. 432, 401–410 (2005).

    Article  ADS  Google Scholar 

  35. Zamaninasab, M., Clausen-Brown, E., Savolainen, T. & Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 510, 126–128 (2014).

    Article  ADS  Google Scholar 

  36. Bouquet, S. et al. From lasers to the universe: scaling laws in laboratory astrophysics. High Energy Density Phys. 6, 368–380 (2010).

    Article  ADS  Google Scholar 

  37. Marti-Vidal, I., Muller, S., Vlemmings, W., Horellou, C. & Aalto, S. A strong magnetic field in the jet base of a supermassive black hole. Science 348, 6232 (2015).

    Article  Google Scholar 

  38. Gomez, J.-L. et al. Flashing superluminal components in the jet of the radio galaxy 3C120. Science 289, 5488 (2000).

    Article  Google Scholar 

  39. Corde, S. et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524, 442–445 (2015).

    Article  ADS  Google Scholar 

  40. Rayleigh, J. W. On the passage of waves through apertures in plane screens, and allied problems. Phil. Mag. 43, 259–272 (1897).

    Article  Google Scholar 

  41. Kirchhoff, G. R. Zur Theorie der Lichtstrahlen. Ann. Phys. 254, 663–695 (1883).

    Article  Google Scholar 

  42. Brady, C. S. & Arber, T. D. An ion acceleration mechanism in laser illuminated targets with internal electron density structure. Plasma Phys. Control. Fusion 53, 015001 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Gemini team at the Central Laser Facility of the Rutherford Appleton Laboratory for their support during the experiment; in particular, N. Booth and D. Symes. We acknowledge the use of the ARCHIE-WeST and ARCHER high performance computers. This work is supported by EPSRC (grants: EP/J003832/1, EP/L001357/1, EP/K022415/1 and EP/L000237/1), STFC (grant number ST/K502340/1) and the US Air Force Office of Scientific Research (grant: FA8655-13-1-3008). EPOCH was developed under EPSRC grant EP/G054940/1.

Author information

Authors and Affiliations

Authors

Contributions

B.G.-I., R.J.G., M.K. and P.M. conceived the experiment. R.J.G., R.J.D., B.G.-I., R.W., J.M., N.M.H.B., S.H., J.S.G. and P.M. executed the experiment and B.G.-I. and R.J.G. performed the analysis of the experimental data. M.K. and B.G.-I. performed the simulations and analysis of the simulation results, with contributions from R.C. P.M. provided overall supervision of the work, with contributions from D.N. and M.B. The manuscript was prepared by P.M., B.G.-I., M.K. and R.J.G. with contributions from all authors.

Corresponding author

Correspondence to Paul McKenna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 399 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Izquierdo, B., Gray, R., King, M. et al. Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction. Nature Phys 12, 505–512 (2016). https://doi.org/10.1038/nphys3613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing