Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity in CuxTiSe2

Abstract

Charge density waves (CDWs) are periodic modulations of the density of conduction electrons in solids. They are collective states that arise from intrinsic instabilities often present in low-dimensional electronic systems. The most well-studied examples are the layered dichalcogenides–an example of which is TiSe2, one of the first CDW-bearing materials to be discovered. At low temperatures, a widely held belief is that the CDW competes with another collective electronic state, superconductivity. But despite much exploration, a detailed study of this competition is lacking. Here we report how, on controlled intercalation of TiSe2 with Cu to yield CuxTiSe2, the CDW transition can be continuously suppressed, and a new superconducting state emerges near x=0.04, with a maximum transition temperature Tc of 4.15 K at x=0.08. CuxTiSe2 thus provides the first opportunity to study the CDW to superconductivity transition in detail through an easily controllable chemical parameter, and will provide fundamental insight into the behaviour of correlated electron systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lattice parameters of CuxTiSe2.
Figure 2: Magnetization and transport properties of CuxTiSe2.
Figure 3: The superconducting phase transition as a function of Cu content x.
Figure 4: Characterization of the superconductivity in Cu0.08TiSe2.
Figure 5: Summary of the composition-dependent properties in CuxTiSe2.
Figure 6: The CuxTiSe2 Tx electronic phase diagram.

Similar content being viewed by others

References

  1. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 28, 193–335 (1969).

    Article  ADS  Google Scholar 

  2. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal diehaleogenides. Adv. Phys. 24, 117–201 (1975).

    Article  ADS  Google Scholar 

  3. Di Salvo, F. J., Moncton, D. E. & Waszczak, J. V. Electronic properties and superlattice formation in the semimetal TiSe2 . Phys. Rev. B 14, 4321–4328 (1976).

    Article  ADS  Google Scholar 

  4. Kim, S. J. et al. AFM image visualization of layered dichalcogenides, 1T-MTe(2) (M=V, Ta). J. Phys. Chem. Solids 58, 659–663 (1997).

    Article  ADS  Google Scholar 

  5. Kasuya, T., Jung, M. H. & Takabatake, T. Charge density wave and excitonic magnetic polarons in CeTe2 . J. Magn. Magn. Mater. 220, 235–258 (2000).

    Article  ADS  Google Scholar 

  6. Boswell, F. W. & Bennett, J. C. Density waves in Nb3Te4: Effects of indium and thallium intercalation. Mater. Res. Bull. 31, 1083–1092 (1996).

    Article  Google Scholar 

  7. Wang, C., Slough, C. G. & Coleman, R. V. Spectroscopy of dichalcogenides and trichalcogenides using scanning tunneling microscopy. J. Vac. Sci. Technol. B 9, 1048–1051 (1991).

    Article  Google Scholar 

  8. Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2 . J. Phys. Chem. Solids 53, 1259–1263 (1992).

    Article  ADS  Google Scholar 

  9. Kumakura, T., Tan, H., Handa, T., Morishita, M. & Fukuyama, H. Charge density wave and superconductivity in 2H-TaSe2 . Czech. J. Phys. 46, 2611–2612 (1996).

    Article  Google Scholar 

  10. Nunezregueiro, M., Mignot, J. M., Jaime, M., Castello, D. & Monceau, P. Superconductivity under pressure in linear chalcogenides. Synth. Met. 56, 2653–2659 (1993).

    Article  Google Scholar 

  11. Mihaila, B. et al. Pinning Frequencies of the collective modes in α-uranium. Phys. Rev. Lett. 96, 76401 (2006).

    Article  ADS  Google Scholar 

  12. Jaiswal, D. et al. Superconducting parameters of a CDW compound Lu5Ir4Si10 . Physica B 312, 142–144 (2002).

    Article  ADS  Google Scholar 

  13. Singh, Y., Nirmala, R., Ramakrishnan, S. & Malik, S. K. Competition between superconductivity and charge-density-wave ordering in the Lu5Ir4(Si1-xGex)10 alloy system. Phys. Rev. B 72, 45106 (2005).

    Article  ADS  Google Scholar 

  14. Morris, R. C. Connection between charge-density waves and superconductivity in NbSe2 . Phys. Rev. Lett. 34, 1164–1166 (1975).

    Article  ADS  Google Scholar 

  15. Fang, L. et al. Fabrication and superconductivity of NaxTaS2 crystals. Phys. Rev. B 72, 14534 (2005).

    Article  ADS  Google Scholar 

  16. Bachrach, R. Z. & Skibowski, M. Angle-resolved photoemission from TiSe2 using synchrotron radiation. Phys. Rev. Lett. 37, 40–42 (1976).

    Article  ADS  Google Scholar 

  17. Woo, K. C. et al. Superlattice formation in titanium diselenide. Phys. Rev. B 14, 3242–3247 (1976).

    Article  ADS  Google Scholar 

  18. Wilson, J. A. Concerning the semimetallic characters of TiS2 and TiSe2 . Solid State Commun. 22, 551–553 (1977).

    Article  ADS  Google Scholar 

  19. Zunger, A. & Freeman, A. J. Band structure and lattice instability of TiSe2 . Phys. Rev. B 17, 1839–1842 (1978).

    Article  ADS  Google Scholar 

  20. Myron, H. W. & Freeman, A. J. Electronic structure and optical properties of layered dichalcogenides: TiS2 and TiSe2 . Phys. Rev. B 9, 481–486 (1974).

    Article  ADS  Google Scholar 

  21. Isomaki, H., Boehm, J. von & Krusius, P. Band structure of group IVA transition-metal dichalcogenides. J. Phys. C 12, 3239–3252 (1979).

    Article  ADS  Google Scholar 

  22. Stoffel, N. G., Kevan, S. D. & Smith, N. V. Experimental band structure of 1T-TiSe2 in the normal and charge-density-wave phases. Phys. Rev. B 31, 8049–8055 (1985).

    Article  ADS  Google Scholar 

  23. Kidd, T. E., Miller, T., Chou, M. Y. & Chiang, T.-C. Electron-hole coupling and the charge density wave transition in TiSe2 . Phys. Rev. Lett. 88, 226402 (2002).

    Article  ADS  Google Scholar 

  24. Oftedal, I. Roentgenographische Untersuchungen von SnS2, TiS22, TiSe2, TiTe2 . Z. Phys. Chem. 134, 301–310 (1928).

    Google Scholar 

  25. Bussmann-Holder, A. & Buttner, H. Charge-density-wave formation in TiSe2 driven by an incipient antiferroelectric instability. J. Phys. Condens. Matter 14, 7973–7979 (2002).

    Article  ADS  Google Scholar 

  26. Batlogg, B et al. Superconductivity in Bi-O and Sb-O perovskites. Physica C 162–164, 1393–1396 (1989).

    Article  ADS  Google Scholar 

  27. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  28. Hake, R. R. Upper-critical-field limits for bulk type-II superconductors. Appl. Phys. Lett. 10, 189–192 (1967).

    Article  ADS  Google Scholar 

  29. Carlin, R. L. Magnetochemistry (Springer, New York, 1986).

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported primarily by the US DOE-BES solid state chemistry program, and, in part, by the US NSF MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Morosan or R. J. Cava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morosan, E., Zandbergen, H., Dennis, B. et al. Superconductivity in CuxTiSe2. Nature Phys 2, 544–550 (2006). https://doi.org/10.1038/nphys360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing