Article

A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice

Received:
Accepted:
Published online:

Abstract

Topological charge pumping enables the transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transported charge is quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. Here, we report on the realization of such a pump with ultracold bosonic atoms forming a Mott insulator in a dynamically controlled optical superlattice. By taking in situ images of the cloud, we observe a quantized deflection per pump cycle. We reveal the pump’s genuine quantum nature by showing that, in contrast to ground-state particles, a counterintuitive reversed deflection occurs for particles in the first excited band. Furthermore, we directly demonstrate that the system undergoes a controlled topological transition in higher bands when tuning the superlattice parameters. These results open a route to the implementation of more complex pumping schemes, including spin degrees of freedom and higher dimensions.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

  2. 2.

    & Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453 (1984).

  3. 3.

    , & New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

  4. 4.

    , , & Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

  5. 5.

    Towards a quantum pump of electric charges. Phys. Rev. Lett. 64, 1812–1815 (1990).

  6. 6.

    et al. Single-electron current sources: Toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013).

  7. 7.

    , , & Adiabatic pumping through interacting quantum dots. Phys. Rev. Lett. 95, 246803 (2005).

  8. 8.

    , & Fractional quantization of the topological charge pumping in a one-dimensional superlattice. Phys. Rev. B 91, 125411 (2015).

  9. 9.

    , , , & Single-electron pump based on charging effects. Europhys. Lett. 17, 249 (1992).

  10. 10.

    et al. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys. Rev. B 56, 15180–15184 (1997).

  11. 11.

    et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

  12. 12.

    , , & An adiabatic quantum electron pump. Science 283, 1905–1908 (1999).

  13. 13.

    Scattering approach to parametric pumping. Phys. Rev. B 58, R10135 (1998).

  14. 14.

    , , , & Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

  15. 15.

    , , , & Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).

  16. 16.

    et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).

  17. 17.

    et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

  18. 18.

    , , , & Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

  19. 19.

    et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

  20. 20.

    , , , & Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

  21. 21.

    et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

  22. 22.

    et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

  23. 23.

    et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

  24. 24.

    & Quantum ratchets for quantum communication with optical superlattices. Phys. Rev. A 76, 052304 (2007).

  25. 25.

    , & Quantum transport of bosonic cold atoms in double-well optical lattices. Phys. Rev. A 84, 013608 (2011).

  26. 26.

    , & Topological charge pumping in a one-dimensional optical lattice. Phys. Rev. Lett. 111, 026802 (2013).

  27. 27.

    & Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

  28. 28.

    , & Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

  29. 29.

    & Anomalous charge pumping in a one-dimensional optical superlattice. Phys. Rev. A 92, 013609 (2015).

  30. 30.

    & Determining topological order from a local ground-state correlation function. Phys. Rev. B 83, 245115 (2011).

  31. 31.

    , & Proposal for direct measurement of topological invariants in optical lattices. Phys. Rev. Lett. 110, 166802 (2013).

  32. 32.

    Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

  33. 33.

    The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proc. Phys. Soc. A 68, 879 (1955).

  34. 34.

    et al. Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases. Phys. Rev. A 78, 023628 (2008).

  35. 35.

    & Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).

  36. 36.

    , & Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).

  37. 37.

    Energy spectrum of a conduction electron in a magnetic field. Zh. Eksp. Teor. Fiz. 46, 929–946 (1964) [Sov. Phys. JETP 19, 634–645 (1964)].

  38. 38.

    Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

  39. 39.

    & Energy spectrum and the quantum Hall effect on the square lattice with next-nearest-neighbor hopping. Phys. Rev. B 42, 8282–8294 (1990).

  40. 40.

    & Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

  41. 41.

    , & Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

  42. 42.

    et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

  43. 43.

    et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

  44. 44.

    et al. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).

  45. 45.

    Quantum spin pump in s = 1/2 antiferromagnetic chains-holonomy of phase operators in sine-Gordon theory. J. Phys. Soc. Jpn 74, 1214–1223 (2005).

  46. 46.

    & Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

  47. 47.

    et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).

  48. 48.

    & A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001).

  49. 49.

    et al. Topological Thouless pumping of ultracold fermions. (in the press).

Download references

Acknowledgements

We acknowledge insightful discussions with F. Grusdt and S. Kohler. This work was supported by NIM and the EU (UQUAM, SIQS). M.L. was additionally supported by ExQM and O.Z. by the Swiss National Science Foundation.

Author information

Affiliations

  1. Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany

    • M. Lohse
    • , C. Schweizer
    • , M. Aidelsburger
    •  & I. Bloch
  2. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

    • M. Lohse
    • , C. Schweizer
    • , M. Aidelsburger
    •  & I. Bloch
  3. Institut für Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland

    • O. Zilberberg

Authors

  1. Search for M. Lohse in:

  2. Search for C. Schweizer in:

  3. Search for O. Zilberberg in:

  4. Search for M. Aidelsburger in:

  5. Search for I. Bloch in:

Contributions

M.L., C.S. and M.A. performed the experiment and the data analysis. All authors contributed to the theoretical analysis and to the writing of the paper. I.B. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Lohse.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information