Nature of the quantum metal in a two-dimensional crystalline superconductor

Article metrics


Two-dimensional (2D) materials are not expected to be metals at low temperature owing to electron localization1. Consistent with this, pioneering studies on thin films reported only superconducting and insulating ground states, with a direct transition between the two as a function of disorder or magnetic field2,3,4,5,6. However, more recent works have revealed the presence of an intermediate quantum metallic state occupying a substantial region of the phase diagram7,8,9,10, whose nature is intensely debated11,12,13,14,15,16,17. Here, we observe such a state in the disorder-free limit of a crystalline 2D superconductor, produced by mechanical co-lamination of NbSe2 in an inert atmosphere. Under a small perpendicular magnetic field, we induce a transition from superconductor to the quantum metal. We find a unique power-law scaling with field in this phase, which is consistent with the Bose-metal model where metallic behaviour arises from strong phase fluctuations caused by the magnetic field11,12,13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Environmentally controlled device fabrication.
Figure 2: Characterization of bilayer NbSe2 device.
Figure 3: Magnetic-field-tuned phase transitions in 2D NbSe2.
Figure 4: Emergence of the quantum metal.


  1. 1

    Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

  2. 2

    Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998).

  3. 3

    Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

  4. 4

    Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

  5. 5

    Hebard, A. F. & Paalanen, M. A. Magnetic-field-tuned superconductor–insulator transition in two-dimensional films. Phys. Rev. Lett. 65, 927–930 (1990).

  6. 6

    Yazdani, A. & Kapitulnik, A. Superconducting–insulating transition in two-dimensional α-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).

  7. 7

    Ephron, D., Yazdani, A., Kapitulnik, A. & Beasley, M. R. Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys. Rev. Lett. 76, 1529–1532 (1996).

  8. 8

    Christiansen, C., Hernandez, L. M. & Goldman, A. M. Evidence of collective charge behavior in the insulating state of ultrathin films of superconducting metals. Phys. Rev. Lett. 88, 037004 (2002).

  9. 9

    Qin, Y. G., Vicente, C. L. & Yoon, J. Magnetically induced metallic phase in superconducting tantalum films. Phys. Rev. B 73, 100505 (2006).

  10. 10

    Steiner, M. A., Breznay, N. P. & Kapitulnik, A. Approach to a superconductor-to-Bose-insulator transition in disordered films. Phys. Rev. B 77, 212501 (2008).

  11. 11

    Das, D. & Doniach, S. Existence of a Bose metal at T = 0. Phys. Rev. B 60, 1261–1275 (1999).

  12. 12

    Das, D. & Doniach, S. Bose metal: Gauge-field fluctuations and scaling for field-tuned quantum phase transitions. Phys. Rev. B 64, 134511 (2001).

  13. 13

    Dalidovich, D. & Phillips, P. Phase glass is a Bose metal: A new conducting state in two dimensions. Phys. Rev. Lett. 89, 027001 (2002).

  14. 14

    Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003).

  15. 15

    Shimshoni, E., Auerbach, A. & Kapitulnik, A. Transport through quantum melts. Phys. Rev. Lett. 80, 3352–3355 (1998).

  16. 16

    Spivak, B., Zyuzin, A. & Hruska, M. Quantum superconductor–metal transition. Phys. Rev. B 64, 132502 (2001).

  17. 17

    Galitski, V. M., Refael, G., Fisher, M. P. A. & Senthil, T. Vortices and quasiparticles near the superconductor–insulator transition in thin films. Phys. Rev. Lett. 95, 077002 (2005).

  18. 18

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

  19. 19

    Le, L. P. et al. Magnetic penetration depth in layered compound NbSe2 measured by muon spin relaxation. Physica C 185, 2715–2716 (1991).

  20. 20

    Soto, F. et al. Electric and magnetic characterization of NbSe2 single crystals: Anisotropic superconducting fluctuations above Tc . Physica C 460, 789–790 (2007).

  21. 21

    Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2 . Phys. Rev. B 80, 184505 (2009).

  22. 22

    El-Bana, M. S. et al. Superconductivity in two-dimensional NbSe2 field effect transistors. Supercond. Sci. Technol. 26, 125020 (2013).

  23. 23

    Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2 . Proc. Natl Acad. Sci. USA (in the press).

  24. 24

    Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

  25. 25

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  26. 26

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).

  27. 27

    Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 1996).

  28. 28

    Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin–orbit coupling in superconducting δ-doped SrTiO3 heterostructures. Phys. Rev. B 86, 085121 (2012).

  29. 29

    Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599–616 (1979).

  30. 30

    Eley, S., Gopalakrishnan, S., Goldbart, P. M. & Mason, N. Approaching zero-temperature metallic states in mesoscopic superconductor–normal-superconductor arrays. Nature Phys. 8, 59–62 (2012).

  31. 31

    Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex–antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

  32. 32

    Feigelman, M. V., Geshkenbein, V. B. & Larkin, A. I. Pinning and creep in layered superconductors. Physica C 167, 177–187 (1990).

  33. 33

    Mason, N. & Kapitulnik, A. True superconductivity in a two-dimensional superconducting–insulating system. Phys. Rev. B 64, 060504 (2001).

  34. 34

    Li, Y., Vicente, C. L. & Yoon, J. Transport phase diagram for superconducting thin films of tantalum with homogeneous disorder. Phys. Rev. B 81, 020505 (2010).

Download references


We acknowledge helpful discussions with Z. Han, J.-D. Pillet, E. Shimsoni, O. Vafek, A. Kapitulnik, D. Xiao and D. Gopalan. We thank J. Shi, F. Zhao, D. Wang and S. Chen for assistance with device fabrication. This material is based on work supported by the NSF MRSEC Program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Salary support is provided by the NSF under grants NEB- 1124894 (A.W.T.) and DMR-1056527 (A.N.P.). Some measurements were performed at the National High Magnetic Field Laboratory, which is supported by the NSF Cooperative Agreement (DMR-0654118), the State of Florida and the Department of Energy. S.J. is supported by the National Basic Research Program of China (grants 2013CB921901 and 2014CB239302). R.J.C. is supported by the Department of Energy, Division of Basic Energy Sciences (grant DOE FG02-98ER45706). P.K. acknowledges support from the Army Research Office (grant W911NF-14-1-0638).

Author information

A.W.T., B.H., C.R.D. and A.N.P. conceived and designed the experiment; Z.J.Y. and S.J. synthesized the NbSe2 crystals; A.W.T. fabricated the devices with assistance from Y.D.K.; A.W.T. and B.H. performed the transport measurements; A.W.T., B.H., C.R.D. and A.N.P. analysed the data and wrote the paper. R.J.C., J.H., P.K., C.R.D. and A.N.P. advised.

Correspondence to C. R. Dean or A. N. Pasupathy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 407 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsen, A., Hunt, B., Kim, Y. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Phys 12, 208–212 (2016) doi:10.1038/nphys3579

Download citation

Further reading