Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Raman coherence in a circuit quantum electrodynamics lambda system

Abstract

Atomic three-level Λ systems dressed by two coherent electromagnetic fields can exhibit coherent population trapping and electromagnetically induced transparency (EIT) due to quantum interference. By addressing the combined qubit–cavity states of a superconducting transmon qubit in a three-dimensional copper cavity with two microwave drives we establish an effective Λ system, two legs of which are defined by a dipole transition and a two-photon transition. This circuit-based system allows the observation of three-microwave-photon Raman coherence effects, including coherent population trapping and EIT, which are demonstrated here with both steady-state spectroscopic techniques and time-domain measurements. By sending Gaussian microwave pulses through the cavity in the EIT regime, a negative group velocity of the pulse is observed with the peak of the pulse exiting the cavity 9.4 μs before entering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cQED Λ system.
Figure 2: Coherent population trapping.
Figure 3: Dark state coherence.
Figure 4: EIT.
Figure 5: Backward light.

Similar content being viewed by others

References

  1. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. & Schoelkopf, R. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  2. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  3. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  Google Scholar 

  4. Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008).

    Article  ADS  Google Scholar 

  5. Niemczyk, T. et al. Beyond the Jaynes-Cummings model: Circuit QED in the ultrastrong coupling regime. Nature Phys. 6, 772–776 (2010).

    Article  ADS  Google Scholar 

  6. Hoffman, A. J. et al. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 1–4 (2011).

    Article  Google Scholar 

  7. Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).

    Article  ADS  Google Scholar 

  8. Murch, K. W. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).

    Article  ADS  Google Scholar 

  9. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006).

    Article  ADS  Google Scholar 

  10. Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013).

    Article  ADS  Google Scholar 

  11. Shankar, S. et al. Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013).

    Article  ADS  Google Scholar 

  12. Inomata, K. et al. Microwave down-conversion with an impedance-matched Λ system in driven circuit QED. Phys. Rev. Lett. 113, 063604 (2014).

    Article  ADS  Google Scholar 

  13. Bianchetti, R. et al. Control and tomography of a three level superconducting artificial atom. Phys. Rev. Lett. 105, 223601 (2010).

    Article  ADS  Google Scholar 

  14. Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  15. Anisimov, P. M. et al. Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011).

    Article  ADS  Google Scholar 

  16. Novikov, S. et al. Autler–Townes splitting in a three-dimensional transmon superconducting qubit. Phys. Rev. B 88, 060503 (2013).

    Article  ADS  Google Scholar 

  17. Agap’ev, B., Gornyi, M., Matisov, B. & Rozhdestvenskii, Y. Coherent population trapping in quantum systems. Usp. Fiz. Nauk 163, 1–36 (1993).

    Article  Google Scholar 

  18. Arimondo, E. V coherent population trapping in laser spectroscopy. Prog. Opt. 35, 257–354 (1996).

    Article  ADS  Google Scholar 

  19. Boller, K.-J., Imamoǧlu, A. & Harris, S. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    Article  ADS  Google Scholar 

  20. Marangos, J. P. Electromagnetically induced transparency. J. Mod. Opt. 45, 471–503 (1998).

    Article  ADS  Google Scholar 

  21. Gaubatz, U., Rudecki, P., Schiemann, S. & Bergmann, K. Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results. J. Chem. Phys. 92, 5363–5376 (1990).

    Article  ADS  Google Scholar 

  22. Parkins, A. S., Marte, P., Zoller, P., Carnal, O. & Kimble, H. J. Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51, 1578–1596 (1995).

    Article  ADS  Google Scholar 

  23. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  24. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  25. Kelly, W.-R. et al. Direct observation of coherent population trapping in a superconducting artificial atom. Phys. Rev. Lett. 104, 163601 (2010).

    Article  ADS  Google Scholar 

  26. Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletić, V. Vacuum-induced transparency. Science 333, 1266–1269 (2011).

    Article  ADS  Google Scholar 

  27. Abdumalikov, A. A. Jr et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).

    Article  ADS  Google Scholar 

  28. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  ADS  Google Scholar 

  29. Jaynes, E. & Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  30. Suri, B. et al. Observation of Autler–Townes effect in a dispersively dressed Jaynes–Cummings system. New J. Phys. 15, 125007 (2013).

    Article  ADS  Google Scholar 

  31. Wallraff, A. et al. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity. Phys. Rev. Lett. 99, 1–4 (2007).

    Article  Google Scholar 

  32. Schuster, D. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    Article  ADS  Google Scholar 

  33. Li, J. et al. Decoherence, Autler–Townes effect, and dark states in two-tone driving of a three-level superconducting system. Phys. Rev. B 84, 104527 (2011).

    Article  ADS  Google Scholar 

  34. Reed, M. et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes–Cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010).

    Article  ADS  Google Scholar 

  35. Bishop, L. S., Ginossar, E. & Girvin, S. M. Response of the strongly driven Jaynes–Cummings oscillator. Phys. Rev. Lett. 105, 100505 (2010).

    Article  ADS  Google Scholar 

  36. Boissonneault, M., Gambetta, J. M. & Blais, A. Improved superconducting qubit readout by qubit-induced nonlinearities. Phys. Rev. Lett. 105, 100504 (2010).

    Article  ADS  Google Scholar 

  37. Gehring, G. M., Schweinsberg, A., Barsi, C., Kostinski, N. & Boyd, R. W. Observation of backward pulse propagation through a medium with a negative group velocity. Science 312, 895–897 (2006).

    Article  ADS  Google Scholar 

  38. Boyd, R. W. & Gauthier, D. J. Controlling the velocity of light pulses. Science 326, 1074–1077 (2009).

    Article  ADS  Google Scholar 

  39. Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. The speed of information in a ‘fast-light’ optical medium. Nature 425, 695–698 (2003).

    Article  ADS  Google Scholar 

  40. Garrison, J. C., Mitchell, M. W., Chiao, R. Y. & Bolda, E. L. Superluminal signals: Causal loop paradoxes revisited. Phys. Lett. A 245, 19–25 (1998).

    Article  ADS  Google Scholar 

  41. Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337 (1977).

    Article  ADS  Google Scholar 

  42. Kossakowski, A. On quantum statistical mechanics of non-Hamiltonian systems. Rep. Math. Phys. 3, 247–274 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  43. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  44. Boissonneault, M., Gambetta, J. & Blais, A. Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates. Phys. Rev. A 79, 013819 (2009).

    Article  ADS  Google Scholar 

  45. Rabin, Y. & Ben-Reuven, A. Theory of resonance excitation of N-level atomic systems by strong coherent radiation. Phys. Rev. A 19, 1697–1707 (1979).

    Article  ADS  Google Scholar 

  46. Garrett, C. & McCumber, D. Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A 1, 305–313 (1970).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.C.W. would like to acknowledge support from the Joint Quantum Institute and the State of Maryland through the Center for Nanophysics and Advanced Materials. The authors would like to thank J. Lefebvre for technical support.

Author information

Authors and Affiliations

Authors

Contributions

S.N. designed and performed the experiments, and analysed the data. S.N. and B.S.P. wrote the manuscript. S.P.P. obtained the Ramsey data for qubit calibration. S.N., T.S., F.C.W. and B.S.P. developed the theoretical model. S.N., T.S. and B.S.P. carried out the numerical simulations. T.S., J.E.R. and B.S. advised on experimental techniques. F.C.W. and B.S.P. supervised fabrication, experiments and data analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to B. S. Palmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, S., Sweeney, T., Robinson, J. et al. Raman coherence in a circuit quantum electrodynamics lambda system. Nature Phys 12, 75–79 (2016). https://doi.org/10.1038/nphys3537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing