Abstract
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Angeli, I. & Marinova, K. P. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 99, 69–95 (2013).
Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).
Tanihata, I. et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985).
Wienholtz, F. et al. Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346–349 (2013).
Steppenbeck, D. et al. Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca. Nature 502, 207–210 (2013).
Brown, B. A. Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 85, 5296–5299 (2000).
Lattimer, J. M. & Prakash, M. The physics of neutron stars. Science 304, 536–542 (2004).
Hebeler, K., Lattimer, J. M., Pethick, C. J. & Schwenk, A. Equation of state and neutron star properties constrained by nuclear physics and observation. Astrophys. J. 773, 11 (2013).
Zenihiro, J. et al. Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep = 295 MeV. Phys. Rev. C 82, 044611 (2010).
Tarbert, C. M. et al. Neutron skin of 208Pb from coherent pion photoproduction. Phys. Rev. Lett. 112, 242502 (2012).
Abrahamyan, S. et al. Measurement of the neutron radius of 208Pb through parity violation in electron scattering. Phys. Rev. Lett. 108, 112502 (2012).
Donnelly, T. W., Dubach, J. & Sick, I. Isospin dependences in parity-violating electron scattering. Nucl. Phys. A 503, 589–631 (1989).
Tamii, A. et al. Complete electric dipole response and the neutron skin in 208Pb. Phys. Rev. Lett. 107, 062502 (2011).
Hashimoto, T. et al. Dipole polarizability of 120Sn and nuclear energy density functionals. Phys. Rev. C 92, 031305(R) (2015).
Rossi, D. M. et al. Measurement of the dipole polarizability of the unstable neutron-rich nucleus 68Ni. Phys. Rev. Lett. 111, 242503 (2013).
Riordan, S. et al. CREX proposal to Jefferson Lab (2013); http://hallaweb.jlab.org/parity/prex/c-rex2013_v7.pdf.
Horowitz, C. J., Kumar, K. S. & Michaels, R. Electroweak measurements of neutron densities in CREX and PREX at JLab, USA. Eur. Phys. J. A 50, 48 (2014).
Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).
Reinhard, P.-G. & Nazarewicz, W. Information content of a new observable: The case of the nuclear neutron skin. Phys. Rev. C 81, 051303(R) (2010).
Piekarewicz, J. et al. Electric dipole polarizability and the neutron skin. Phys. Rev. C 85, 041302 (2012).
Reinhard, P.-G. et al. Information content of the weak-charge form factor. Phys. Rev. C 88, 034325 (2013).
Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).
Machleidt, R. & Entem, D. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011).
Ekström, A. et al. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301(R) (2015).
Hagen, G., Papenbrock, T., Hjorth-Jensen, M. & Dean, D. J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 77, 096302 (2014).
Emrich, H. J. et al. Radial distribution of nucleons in isotopes 48Ca, 40Ca. Nucl. Phys. A 396, 401c–408c (1983).
Bacca, S. et al. Giant and pigmy dipole resonances in 4He, 16,22O, and 40Ca from chiral nucleon–nucleon interactions. Phys. Rev. C 90, 064619 (2014).
Ahrens, J. et al. Total nuclear photon absorption cross-sections for some light elements. Nucl. Phys. A 251, 479–492 (1975).
Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011).
Kortelainen, M. et al. Nuclear energy density optimization: Shell structure. Phys. Rev. C 89, 054314 (2014).
Lattimer, J. M. & Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J. 771, 51 (2013).
Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 550, 426–443 (2001).
Lattimer, J. M. & Steiner, A. W. Neutron star masses and radii from quiescent low-mass X-ray binaries. Astrophys. J. 784, 123 (2014).
Bogner, S. K., Furnstahl, R. J. & Perry, R. J. Similarity renormalization group for nucleon-nucleon interactions. Phys. Rev. C 75, 061001(R) (2007).
Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003).
Holt, J. D., Menéndez, J., Simonis, J. & Schwenk, A. Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes. Phys. Rev. C 90, 024312 (2014).
Hagen, G. et al. Coupled-cluster theory for three-body Hamiltonians. Phys. Rev. C 76, 034302 (2007).
Roth, R. et al. Medium-mass nuclei with normal-ordered chiral NN + 3N interactions. Phys. Rev. Lett. 109, 052501 (2012).
Taube, A. G. & Bartlett, R. J. Improving upon CCSD(T): ΛCCSD(T). I. Potential energy surfaces. J. Chem. Phys. 128, 044110 (2008).
Gour, J. R., Piecuch, P., Hjorth-Jensen, M., Włoch, M. & Dean, D. J. Coupled-cluster calculations for valence systems around 16O. Phys. Rev. C 74, 024310 (2006).
Bacca, S., Barnea, N., Hagen, G., Orlandini, G. & Papenbrock, T. First principles description of the giant dipole resonance in 16O. Phys. Rev. Lett. 111, 122502 (2013).
Hagen, G., Papenbrock, T. & Dean, D. J. Solution of the center-of-mass problem in nuclear structure calculations. Phys. Rev. Lett. 103, 062503 (2009).
Kanungo, R. et al. Exploring the anomaly in the interaction cross section and matter radius of 23O. Phys. Rev. C 84, 061304(R) (2011).
Olive, K. A. & (Particle Data Group), et al. Review of particle physics. Chin. Phys. C 38, 090001 (2014).
Horowitz, C. J. & Piekarewicz, J. Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei. Phys. Rev. C 86, 045503 (2012).
Kortelainen, M. et al. Neutron-skin uncertainties of Skyrme energy density functionals. Phys. Rev. C 88, 031305 (2013).
Drischler, C., Somà, V. & Schwenk, A. Microscopic calculations and energy expansions for neutron-rich matter. Phys. Rev. C 89, 025806 (2014).
van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994).
Epelbaum, E. et al. Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002).
Entem, D. R. & Machleidt, R. Accurate nucleon–nucleon potential based upon chiral perturbation theory. Phys. Lett. B 524, 93–98 (2002).
Bernard, V., Epelbaum, E., Krebs, H. & Meißner, U.-G. Subleading contributions to the chiral three-nucleon force. II. Short-range terms and relativistic corrections. Phys. Rev. C 84, 054001 (2011).
Chen, C. R., Payne, G. L., Friar, J. L. & Gibson, B. F. Convergence of Faddeev partial-wave series for triton ground state. Phys. Rev. C 31, 2266–2273 (1985).
Carlson, J. Green’s function Monte Carlo study of light nuclei. Phys. Rev. C 36, 2026–2033 (1987).
Pudliner, B. S., Pandharipande, V. R., Carlson, J. & Wiringa, R. B. Quantum Monte Carlo calculations of A = 6 nuclei. Phys. Rev. Lett. 74, 4396–4399 (1995).
Wiringa, R. B., Pieper, S. C., Carlson, J. & Pandharipande, V. R. Quantum Monte Carlo calculations of A = 8 nuclei. Phys. Rev. C 62, 014001 (2000).
Mihaila, B. & Heisenberg, J. H. Microscopic calculation of the inclusive electron scattering structure function in 16O. Phys. Rev. Lett. 84, 1403–1406 (2000).
Pieper, S. C., Varga, K. & Wiringa, R. B. Quantum Monte Carlo calculations of A = 9,10 nuclei. Phys. Rev. C 66, 044310 (2002).
Navrátil, P., Gueorguiev, V. G., Vary, J. P., Ormand, W. E. & Nogga, A. Structure of A = 10–13 nuclei with two- plus three-nucleon interactions from chiral effective field theory. Phys. Rev. Lett. 99, 042501 (2007).
Maris, P. et al. Origin of the anomalous long lifetime of 14C. Phys. Rev. Lett. 106, 202502 (2011).
Hergert, H., Binder, S., Calci, A., Langhammer, J. & Roth, R. Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013).
Cipollone, A., Barbieri, C. & Navrátil, P. Isotopic chains around oxygen from evolved chiral two- and three-nucleon interactions. Phys. Rev. Lett. 111, 062501 (2013).
Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).
Jansen, G. R., Engel, J., Hagen, G., Navrátil, P. & Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 113, 142502 (2014).
Lähde, T. et al. Lattice effective field theory for medium-mass nuclei. Phys. Lett. B 732, 110–115 (2014).
Acknowledgements
We acknowledge discussions with C. Horowitz, J. Piekarewicz, P.-G. Reinhard and A. Steiner. This material is based on work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DEFG02-96ER40963 (University of Tennessee), DOE-DE-SC0013365 (Michigan State University), DE-SC0008499 and DE-SC0008511 (NUCLEI SciDAC collaboration), the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory and the National Science Foundation with award number 1404159. It was also supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT, IG2012-5158), by the European Research Council (ERC-StG-240603), by NSERC Grant No. 2015-00031, by the US-Israel Binational Science Foundation (Grant No. 2012212), by the ERC Grant No. 307986 STRONGINT, and the Research Council of Norway under contract ISPFysikk/216699. TRIUMF receives funding via a contribution through the National Research Council Canada. Computer time was provided by the INCITE program. This research used resources of the Oak Ridge Leadership Computing Facility located at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DEAC05-00OR22725; and computing resources at the Jülich Supercomputing Center.
Author information
Authors and Affiliations
Contributions
G.H. initiated and led the project. G.H., A.E., G.R.J., T.P., K.A.W., S.B., N.B., B.C., C.D., K.H., M.H.-J., M.M., G.O., A.S. and J.S. developed computational tools utilized in this study. G.H., G.R.J., K.A.W., C.D., K.H. and M.M. performed calculations. G.H., A.E., C.F., G.R.J., W.N., T.P., K.A.W., S.B., N.B., C.D., K.H., M.H.-J., M.M., G.O. and A.S. discussed and interpreted the results. G.H., A.E., C.F., G.R.J., W.N., T.P., K.A.W., K.H. and A.S. wrote the paper with input from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 403 kb)
Rights and permissions
About this article
Cite this article
Hagen, G., Ekström, A., Forssén, C. et al. Neutron and weak-charge distributions of the 48Ca nucleus. Nature Phys 12, 186–190 (2016). https://doi.org/10.1038/nphys3529
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3529
This article is cited by
-
Ab initio predictions link the neutron skin of 208Pb to nuclear forces
Nature Physics (2022)
-
A combined Glauber model plus relativistic Hartree–Bogoliubov theory analysis of nuclear reactions with light and medium mass nuclei
Pramana (2022)
-
Nucleon momentum distribution of 56Fe from the axially deformed relativistic mean-field model with nucleon-nucleon correlations
Science China Physics, Mechanics & Astronomy (2021)
-
Local Two- and Three-Nucleon Chiral Interactions
Few-Body Systems (2021)
-
Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32
Nature Physics (2021)