Layered transition metal dichalcogenides are ideal systems for exploring the effects of dimensionality on correlated electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 a CDW sets in at TCDW = 33 K and superconductivity sets in at Tc = 7.2 K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. Here we present an electronic characterization study of a single two-dimensional (2D) layer of NbSe2 by means of low-temperature scanning tunnelling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that 3 × 3 CDW order in NbSe2 remains intact in two dimensions. Superconductivity also still remains in the 2D limit, but its onset temperature is depressed to 1.9 K. Our STS measurements at 5 K reveal a CDW gap of Δ = 4 meV at the Fermi energy, which is accessible by means of STS owing to the removal of bands crossing the Fermi level for a single layer. Our observations are consistent with the simplified (compared to bulk) electronic structure of single-layer NbSe2, thus providing insight into CDW formation and superconductivity in this model strongly correlated system.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

  2. 2.

    Quantum Theory of Solids (Clarendon, 1955).

  3. 3.

    et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

  4. 4.

    , , & Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

  5. 5.

    et al. Observation of shell effects in superconducting nanoparticles of Sn. Nature Mater. 9, 550–554 (2010).

  6. 6.

    , & Effect of dimensionality on the charge-density wave in few-layer 2H- NbSe2. Phys. Rev. B 80, 241108 (2009).

  7. 7.

    & Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

  8. 8.

    , & Three-dimensional metallic and two-dimensional insulating behaviour in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014).

  9. 9.

    et al. Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films. Phys. Rev. B 91, 121113 (2015).

  10. 10.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  11. 11.

    Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 28, 299–301 (1972).

  12. 12.

    et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 80, 184505 (2009).

  13. 13.

    et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

  14. 14.

    & Strong-coupling theory of charge-density-wave transitions. Phys. Rev. Lett. 51, 138–141 (1983).

  15. 15.

    et al. Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys. Rev. Lett. 92, 086401 (2004).

  16. 16.

    et al. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 107, 107403 (2011).

  17. 17.

    et al. Gaps and kinks in the electronic structure of the superconductor 2H- NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85, 224532 (2012).

  18. 18.

    et al. Quantum phase transition from triangular to stripe charge order in NbSe2. Proc. Natl Acad. Sci. USA 110, 1623–1627 (2013).

  19. 19.

    et al. Visualizing the charge density wave transition in 2H- NbSe2 in real space. Phys. Rev. B 89, 235115 (2014).

  20. 20.

    et al. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H- NbSe2. Phys. Rev. Lett. 114, 037001 (2015).

  21. 21.

    , & Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32, 882–885 (1974).

  22. 22.

    et al. Charge-density-wave mechanism in 2H-NbSe2: Photoemission results. Phys. Rev. Lett. 82, 4504–4507 (1999).

  23. 23.

    et al. Primary role of the barely occupied states in the charge density wave formation of NbSe2. Phys. Rev. Lett. 101, 226406 (2008).

  24. 24.

    et al. Two energy gaps and fermi-surface “Arcs” in NbSe2. Phys. Rev. Lett. 102, 166402 (2009).

  25. 25.

    & New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 35, 120–123 (1975).

  26. 26.

    et al. Charge-order-maximized momentum-dependent superconductivity. Nature Phys. 3, 720–725 (2007).

  27. 27.

    et al. Energy gaps measured by scanning tunneling microscopy. Phys. Rev. B 42, 8890–8906 (1990).

  28. 28.

    , & STM spectroscopy of vortex cores and the flux lattice. Physica B 169, 422–431 (1991).

  29. 29.

    , & Heat-capacity of 2H-N NbSe2 at charge-density wave transition. Phys. Lett. A 54, 27–28 (1975).

  30. 30.

    et al. Charge-density waves observed at 4.2 K by scanning-tunneling microscopy. Phys. Rev. B 37, 2741–2744 (1988).

  31. 31.

    et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

  32. 32.

    & Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009).

  33. 33.

    , & Fermi-surface nesting and the origin of the charge-density wave in NbSe2. Phys. Rev. B 73, 205102 (2006).

  34. 34.

    et al. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC (0001) substrates. J. Phys. Condens. Mater. 25, 095002 (2013).

  35. 35.

    et al. WSXM: A software forscanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

Download references


Research supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy (DOE), under grant DE-AC02-05CH11231 supporting the sp2-bonded Materials Program (STM imaging and transport), and by the National Science Foundation under award #DMR-1206512 (STS spectroscopic analysis). Work at the ALS is supported by DOE BES under Contract No. DE-AC02-05CH11231. H.R. acknowledges support from Max Planck Korea/POSTECH Research Initiative of NRF, Korea. M.T.E. is supported by the ARC Laureate Fellowship project (FL120100038). A.R. acknowledges fellowship support by the Austrian Science Fund (FWF): J3026-N16.

Author information


  1. Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

    • Miguel M. Ugeda
    • , Aaron J. Bradley
    • , Seita Onishi
    • , Yi Chen
    • , Wei Ruan
    • , Claudia Ojeda-Aristizabal
    • , Mark T. Edmonds
    • , Hsin-Zon Tsai
    • , Alexander Riss
    • , Dunghai Lee
    • , Alex Zettl
    •  & Michael F. Crommie
  2. CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain

    • Miguel M. Ugeda
  3. Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain

    • Miguel M. Ugeda
  4. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Yi Zhang
    • , Hyejin Ryu
    • , Sung-Kwan Mo
    •  & Zahid Hussain
  5. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    • Yi Zhang
    •  & Zhi-Xun Shen
  6. National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

    • Yi Zhang
  7. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

    • Wei Ruan
  8. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Claudia Ojeda-Aristizabal
    • , Alex Zettl
    •  & Michael F. Crommie
  9. Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, USA

    • Claudia Ojeda-Aristizabal
  10. School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia

    • Mark T. Edmonds
  11. Institute of Applied Physics, Vienna University of Technology, 1040 Wien, Austria

    • Alexander Riss
  12. Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Alex Zettl
    •  & Michael F. Crommie
  13. Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA

    • Zhi-Xun Shen


  1. Search for Miguel M. Ugeda in:

  2. Search for Aaron J. Bradley in:

  3. Search for Yi Zhang in:

  4. Search for Seita Onishi in:

  5. Search for Yi Chen in:

  6. Search for Wei Ruan in:

  7. Search for Claudia Ojeda-Aristizabal in:

  8. Search for Hyejin Ryu in:

  9. Search for Mark T. Edmonds in:

  10. Search for Hsin-Zon Tsai in:

  11. Search for Alexander Riss in:

  12. Search for Sung-Kwan Mo in:

  13. Search for Dunghai Lee in:

  14. Search for Alex Zettl in:

  15. Search for Zahid Hussain in:

  16. Search for Zhi-Xun Shen in:

  17. Search for Michael F. Crommie in:


M.M.U. and A.J.B. conceived the work and designed the research strategy. M.M.U., A.J.B., Y.C., W.R. and M.T.E. measured and analysed the STM/STS data. Y.Z., H.R. and S.-K.M. performed the MBE growth and ARPES and LEED characterization of the samples. S.O., C.O.-A., M.M.U. and Y.C. carried out the transport experiments. H.-Z.T. and A.R. helped in the experiments. D.L. participated in the interpretation of the experimental data. Z.H. and Z.-X.S. supervised the MBE and sample characterization. A.Z. supervised the transport measurements. M.F.C. supervised the STM/STS experiments. M.M.U. wrote the paper with help from M.F.C. and A.Z. M.M.U. and M.F.C. coordinated the collaboration. All authors contributed to the scientific discussion and manuscript revisions.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Miguel M. Ugeda or Michael F. Crommie.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history






Further reading