Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase

Abstract

Until the late 1980s, phases of matter were understood in terms of Landau’s symmetry-breaking theory. Following the discovery of the quantum Hall effect, the introduction of a second class of phases, those with topological order, was necessary. Phase transitions within the first class of phases involve a change in symmetry, whereas those between topological phases require a change in topological order. However, in rare cases, transitions may occur between the two classes, in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. Here, we report the existence of such a transition in a two-dimensional electron gas hosted by a GaAs/AlGaAs crystal. When tuned by hydrostatic pressure, the ν = 5/2 fractional quantum Hall state, believed to be a prototypical non-Abelian topological phase, gives way to a quantum Hall nematic phase. Remarkably, this nematic phase develops spontaneously, in the absence of any externally applied symmetry-breaking fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of the magnetoresistance on hydrostatic pressure P in the second Landau level.
Figure 2: Temperature dependence of the magnetoresistance at P = 8.26 kbar.
Figure 3: Contour plots of the magnetoresistance against the pressure and filling factor at T 12 mK.

Similar content being viewed by others

References

  1. Koulakov, A. A., Fogler, M. M. & Shlovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

    Article  ADS  Google Scholar 

  2. Moesnner, R. & Chalker, J. T. Exact results for interacting electrons in high Landau levels. Phys. Rev. B 54, 5006–5015 (1996).

    Article  ADS  Google Scholar 

  3. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    Article  ADS  Google Scholar 

  4. Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065–8072 (1999).

    Article  ADS  Google Scholar 

  5. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).

    Article  ADS  Google Scholar 

  6. Du, R. R. et al. Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389–394 (1999).

    Article  ADS  Google Scholar 

  7. Parameswaran, S. A., Kivelson, S. A., Sondhi, S. L. & Spivak, B. Z. Weakly coupled Pfaffian as a Type I quantum Hall liquid. Phys. Rev. Lett. 106, 236801 (2011).

    Article  ADS  Google Scholar 

  8. Tranquada, J., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, A. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  9. da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    Article  ADS  Google Scholar 

  10. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  Google Scholar 

  11. Vortontsov, A. G. & Sauls, J. A. Crystalline order in superfluid 3He films. Phys. Rev. Lett. 98, 045301 (2007).

    Article  ADS  Google Scholar 

  12. Landau, L. D. & Lifshitz, E. M. Statistical Physics, Course of Theoretical Physics 3rd edn, Vol. 5 (Butterworth-Heinemann, 1980).

    Google Scholar 

  13. Wen, X. G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

    Google Scholar 

  14. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  15. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  16. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  17. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    Article  ADS  Google Scholar 

  18. Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).

    Article  ADS  Google Scholar 

  19. Rezayi, E. H. & Haldane, F. D. M. Incompressible paired Hall state, stripe order, and the composite fermion liquid phase in the half-filled Landau levels. Phys. Rev. Lett. 84, 4685–4688 (2000).

    Article  ADS  Google Scholar 

  20. Wan, X., Hu, Z. X., Rezayi, E. H. & Yang, K. Fractional quantum Hall effect at ν = 5/2: Ground states, non-Abelian quasiholes, and edge modes in a microscopic model. Phys. Rev. B 77, 165316 (2008).

    Article  ADS  Google Scholar 

  21. Wang, H., Sheng, D. N. & Haldane, F. D. M. Particle–hole symmetry breaking and the ν = 5/2 fractional quantum Hall effect. Phys. Rev. B 80, 241311 (2009).

    Article  ADS  Google Scholar 

  22. Pan, W. et al. Strongly anisotropic electronic transport at Landau level filling factor ν = 9/2 and ν = 5/2 under tilted magnetic field. Phys. Rev. Lett. 83, 820–823 (1999).

    Article  ADS  Google Scholar 

  23. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Anisotropic states of two-dimensional electron systems in high Landau levels: Effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824–827 (1999).

    Article  ADS  Google Scholar 

  24. Friess, B., Umansky, V., Tiemann, L., von Klitzing, K. & Smet, J. H. Probing the microscopic structure of stripe phase at filling factor 5/2. Phys. Rev. Lett. 113, 076803 (2014).

    Article  ADS  Google Scholar 

  25. Shi, X. et al. Impact of the modulation doping layer an the ν = 5/2 anisotropy. Phys. Rev. B 91, 125308 (2015).

    Article  ADS  Google Scholar 

  26. Xia, J., Cvicek, V., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Tilt induced anisotropic to isotropic phase transition at ν = 5/2. Phys. Rev. Lett. 105, 176807 (2010).

    Article  ADS  Google Scholar 

  27. Xia, J., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for a fractionally quantized Hall state with anisotropic longitudinal transport. Nature Phys. 7, 845–848 (2011).

    Article  ADS  Google Scholar 

  28. Liu, Y. et al. Evidence for a ν = 5/2 fractional quantum Hall nematic state in parallel magnetic fields. Phys. Rev. B 88, 035307 (2013).

    Article  ADS  Google Scholar 

  29. Prange, R. E. & Girvin, S. M. The Quantum Hall Effect (Springer, 1987).

    Book  Google Scholar 

  30. Pan, W. et al. Competing quantum Hall phases in the second Landau level in the low-density limit. Phys. Rev. B 89, 241302 (2014).

    Article  ADS  Google Scholar 

  31. Koduvayur, S. P. et al. Effect of strain on stripe phases in the quantum Hall regime. Phys. Rev. Lett. 106, 016804 (2011).

    Article  ADS  Google Scholar 

  32. Ran, Y. & Wen, X. G. Detecting topological order through a continuous quantum phase transition. Phys. Rev. Lett. 96, 026802 (2006).

    Article  ADS  Google Scholar 

  33. Ardone, E., Fendley, P. & Fradkin, E. Topological order and conformal quantum critical points. Ann. Phys. 310, 493–551 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  34. Pollanen, J. et al. Heterostructure symmetry and the orientation of the quantum Hall nematic phases. Phys. Rev. B 92, 115410 (2015).

    Article  ADS  Google Scholar 

  35. Peterson, M. R., Jolicoeur, Th. & Das Sarma, S. Finite-layer thickness stabilizes the Pfaffian state for the 5/2 fractional quantum Hall effect: Wave function overlap and topological degeneracy. Phys. Rev. Lett. 101, 016807 (2008).

    Article  ADS  Google Scholar 

  36. Papić, Z., Regnault, N. & Das Sarma, S. Interaction-tuned compressible-to-incompressible phase transitions in quantum Hall systems. Phys. Rev. B 80, 201303 (2009).

    Article  ADS  Google Scholar 

  37. Yoshioka, D. Excitation energies of the fractional quantum Hall effect. J. Phys. Soc. Jpn 55, 885–896 (1986).

    Article  ADS  Google Scholar 

  38. Wójs, A. & Quinn, J. J. Landau level mixing in the ν = 5/2 fractional quantum Hall state. Phys. Rev. B 74, 235319 (2006).

    Article  ADS  Google Scholar 

  39. Wójs, A., Tőke, C. & Jain, J. K. Landau-level mixing and the emergence of Pfaffian excitations for the 5/2 fractional quantum Hall effect. Phys. Rev. Lett. 105, 096802 (2010).

    Article  ADS  Google Scholar 

  40. Nuebler, J. et al. Density dependence of the ν = 5/2 energy gap: Experiment and theory. Phys. Rev. B 81, 035316 (2010).

    Article  ADS  Google Scholar 

  41. Pakrouski, K. et al. Phase diagram of the ν = 5/2 fractional quantum Hall effect: Effects of Landau-level mixing and nonzero width. Phys. Rev. X 5, 021004 (2015).

    Google Scholar 

  42. Tylan-Tyler, A. & Lyanda-Geller, Y. Phase diagram and edge states of the ν = 5/2 fractional quantum Hall state with Landau level mixing and finite well thickness. Phys. Rev. B 91, 205404 (2015).

    Article  ADS  Google Scholar 

  43. Dmowski, L. & Portal, J. C. Magnetotransport in 2D semiconductor systems under pressure. Semicond. Sci. Technol. 4, 211–217 (1989).

    Article  ADS  Google Scholar 

  44. Samkharadze, N. et al. Quantitative analysis of the disorder broadening and the intrinsic gap for the ν = 5/2 fractional quantum Hall state. Phys. Rev. B 84, 121305 (2011).

    Article  ADS  Google Scholar 

  45. Pan, W., Baldwin, K. W., West, K. W., Pfeiffer, L. N. & Tsui, D. C. Spin transition in the ν = 8/3 fractional quantum Hall effect. Phys. Rev. Lett. 108, 216804 (2012).

    Article  ADS  Google Scholar 

  46. Manfra, M. J. et al. Impact of spin-orbit coupling on the quantum Hall nematic phases. Phys. Rev. Lett. 98, 206804 (2007).

    Article  ADS  Google Scholar 

  47. Kumar, A. et al. Particle–hole asymmetry of fractional quantum Hall states in the second Landau level of a two-dimensional hole system. Phys. Rev. B 83, 201305 (2011).

    Article  ADS  Google Scholar 

  48. Lee, S.-Y., Scarola, V. W. & Jain, J. K. Stripe formation in the fractional quantum Hall regime. Phys. Rev. Lett. 87, 256803 (2001).

    Article  ADS  Google Scholar 

  49. Deng, N., Watson, J. D., Rokhinson, L. P., Manfra, M. J. & Csáthy, G. A. Contrasting energy scales of reentrant integer quantum Hall states. Phys. Rev. B 86, 201301 (2012).

    Article  ADS  Google Scholar 

  50. Manfra, M. J. Molecular beam epitaxy of ultra-high-quality AlGaAs/GaAs heterostructures: Enabling physics in low-dimensional electronic systems. Annu. Rev. Condens. Matter Phys. 5, 347–373 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sample growth and measurement at Purdue were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under the award DE-SC0006671. E.F. acknowledges the US National Science Foundation grant DMR 1408713. We thank J. P. Eisenstein for his comments and M. Siqueira for advice on using the pressure cell.

Author information

Authors and Affiliations

Authors

Contributions

N.S., M.J.M. and G.A.C. conceived the experiment. G.C.G. and M.J.M. grew the GaAs/AlGaAs wafer. N.S. fabricated the sample. N.S., K.A.S. and G.A.C. performed the measurements and analysed the data. The manuscript was written by K.A.S. and G.A.C. with input from all authors and with critical contributions from E.F.

Corresponding authors

Correspondence to N. Samkharadze, K. A. Schreiber or G. A. Csáthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samkharadze, N., Schreiber, K., Gardner, G. et al. Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase. Nature Phys 12, 191–195 (2016). https://doi.org/10.1038/nphys3523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing