Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic theory and quantum simulation of atomic heat transport

Abstract

Quantum simulation methods based on electronic-structure theory are deemed unfit to cope with atomic heat transport within the Green–Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the atomic scale. We show that, although this difficulty would also affect classical simulations, thermal conductivity is indeed insensitive to such ill-definedness by virtue of a kind of gauge invariance resulting from energy extensivity and conservation. On the basis of these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat transport to be simulated using ab initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing its predictions to those of classical equilibrium and ab initio non-equilibrium (Müller–Plathe) simulations for a liquid-argon model, and by applying it to heavy water at ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time correlations of the energy flux in LDA Ar.
Figure 2: Comparison of the heat conductivities of our LDA-Ar model, as estimated from GK and MP ab initio molecular dynamics.
Figure 3: Energy displacement in liquid heavy water at ambient conditions.

Similar content being viewed by others

References

  1. Klemens, P. G. Thermal conductivity and lattice vibrational modes. Solid State Phys. 7, 1–98 (1958).

    Article  ADS  Google Scholar 

  2. Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena, II. Irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  4. Evans, D. J. & Morriss, G. Statistical Mechanics of Nonequilibrium Liquids 2nd edn (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  5. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, 1987).

    MATH  Google Scholar 

  6. Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082–6085 (1997).

    Article  ADS  Google Scholar 

  7. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  Google Scholar 

  8. Marx, D. & Hutter, J. Ab initio Molecular Dynamics (Cambridge Univ. Press, 2012).

    Google Scholar 

  9. Stackhouse, S., Stixrude, L. & Karki, B. B. Thermal conductivitity of periclase (MgO) from first principles. Phys. Rev. Lett. 104, 208501 (2010).

    Article  ADS  Google Scholar 

  10. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  11. Kohn, W. & Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  12. Kadanoff, L. P. & Martin, P. C. Hydrodynamic equations and correlation functions. Ann. Phys. 24, 419–469 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  13. Forster, D. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, 1975).

    Google Scholar 

  14. Helfand, E. Transport coefficients from dissipation in a canonical ensemble. Phys. Rev. 119, 1–9 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  15. Resta, R. & Vanderbilt, D. Theory of polarization: A modern approach. Top. Appl. Phys. 105, 31–68 (2007).

    Article  Google Scholar 

  16. Chetty, N. & Martin, R. M. First-principles energy density and its applications to selected polar surfaces. Phys. Rev. B 45, 6074–6088 (1992).

    Article  ADS  Google Scholar 

  17. Ramprasad, R. First-principles energy and stress fields in defected materials. J. Phys. Condens. Matter 14, 5497–5516 (2002).

    Article  ADS  Google Scholar 

  18. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  19. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. Resta, R. Manifestations of Berry’s phase in molecules and in condensed matter. J. Phys. Condens. Matter 12, R107–R143 (2000).

    Article  ADS  Google Scholar 

  21. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  ADS  Google Scholar 

  22. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  23. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  Google Scholar 

  24. Grossman, J. C., Schwegler, E., Draeger, E. W., Gygi, F. & Galli, G. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J. Chem. Phys. 120, 300–311 (2004).

    Article  ADS  Google Scholar 

  25. Silvestrelli, P., Bernasconi, M. & Parrinello, M. Ab initio infrared spectrum of liquid water. Chem. Phys. Lett. 277, 478–482 (1997).

    Article  ADS  Google Scholar 

  26. Marcolongo, A. Theory and Ab initio Simulation of Atomic Heat Transport PhD thesis, SISSA (2014); http://cm.sissa.it/thesis/2014/marcolongo

  27. Matsunaga, N. & Nagashima, A. Transport properties of liquid and gaseous D2O over a wide range of temperature and pressure. J. Phys. Chem. Ref. Data 12, 933–966 (1983).

    Article  ADS  Google Scholar 

  28. Ramires, M. L. V. et al. Standard reference data for thermal conductivity of water. J. Phys. Chem. Ref. Data 24, 1377–1381 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.B. gratefully acknowledges useful discussions with T. Sun and D. Alfè in the early phases of this work and, more recently, with R. Car and R. Resta. All of the authors gratefully thank L. Colombo, C. Melis, S. R. Philpot and A. Chernatynskiy for communicating to them some of their unpublished material.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Stefano Baroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and quantum simulation of atomic heat transport. Nature Phys 12, 80–84 (2016). https://doi.org/10.1038/nphys3509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing