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Observation of a persistent non-equilibrium state
in cold atoms
D. S. Lobser1,2, A. E. S. Barentine1,2, E. A. Cornell1,2 and H. J. Lewandowski1,2*
Boltzmann noticed that his transport equation predicts special
cases in which gases never reach thermal equilibrium. One
example is the monopole breathe mode of atoms confined
in a perfectly isotropic three-dimensional (3D) harmonic
potential1. Such a complete absence of damping had not been
observed in nature, and this anomaly weakened Boltzmann’s
then-controversial claim to have established a microscopic,
atomistic basis for thermodynamics. Only recently has non-
damping of a monopole mode in lower-dimensional systems
been reported in cold-atom experiments performed in highly
elongated trap geometries2,3. The di�culty in generating a
su�ciently spherical harmonic confinement for cold atoms
has so far prevented the observation of Boltzmann’s fully 3D,
isotropic case. Here, thanks to a new magnetic trap4 capable
of producing near-spherical harmonic confinement for cold
atoms,we report a long-delayed vindication for Boltzmann: the
observation of a 3D monopole mode for which the collisional
contribution to damping vanishes.

The Boltzmann equation determines how the phase-space
distribution of a gas, f (r,v, t), evolves as a function of time, t , with
binary collisions between particles with mass,m, in the presence of
an external force, F

df
dt
=
∂f
∂t
+v ·∇rf +

F
m
·∇vf = Icoll[f ] (1)

The collision integral, Icoll, describes how populations at the same
location, r, but differing velocities, v, redistribute to two new
velocities, v′. These local, pairwise collisions conserve momentum
and energy. For the explicit form of the integral, see refs 5,6.

The collision integral vanishes whenever the product of two
single-particle distributions is identical directly before and after a
collision, in other words, when

f (v1)f (v2)= f (v′1)f (v
′

2) (2)

This equality typically implies that the phase-space distribution
is time invariant and the gas has reached equilibrium. However,
when energy, momentum and total atom number are conserved,
equation (2) is generically satisfied by distributions of the form

f (r,v, t)∝A(r)e−
|mv−η(r,t)|2
2mkBT (t) (3)

where A(r) contains information about the external confining
potential, kB is the Boltzmann constant, the temperature T (t) is
time dependent, and η(r, t) is an arbitrary function of space and
time. Although these distributions, known as ‘local equilibrium
distributions’, always cause the collision integral to vanish, they in
general do not satisfy equation (1) (refs 5–8). By constraining the
local equilibrium distribution so that η(r, t)=0 and dT/dt=0, the

distribution becomes a valid solution of equation (1) and is known
as the Maxwell–Boltzmann distribution:

f (r,v)∝A(r)e−
mv2
2kBT

But certain potentials exist where equation (1) is satisfied by non-
equilibrium distributions, in which case the time dependence in
equation (3) remains7,8. One of these cases is the three-dimensional
(3D) isotropic harmonic potential with a solution correspond-
ing to a spherically symmetric ‘monopole mode’, where temper-
ature and cloud size oscillate, with opposite phase, in time8–10.
Because the temperature is oscillating in the absence of heat con-
duction, it is convenient to call the temperature in equation (3)
a ‘kinetic temperature’, Tk(t), and define a ‘spatial temperature’,
Ts(t), which determines the variation in cloud size. The average
temperature (Tk(t)+Ts(t))/2 is constant; the breathing dynamics
are analogous to the oscillatory exchange between kinetic and
potential energy that occurs in simple harmonic motion. Al-
though the structure of equation (1) implies a quasicontinuous
distribution f , and thus very large atom number N , we show
in Methods that the result of vanishing damping is preserved
as N increases from 1 to 2, and onto an arbitrary meso- or
macroscopic number.

This strange absence of damping holds for the monopole mode,
but not necessarily for other collective modes. For the quadrupole
mode, a mode in which the radial and axial widths oscillate 180◦
out of phase, cross-dimensional coupling from collisions causes
damping. In the limit of an interatomic collision rate, γcoll, that is
much smaller than the trap frequency, the quadrupole mode in an
isotropic harmonic potential is predicted to damp at a rate9

ΓQ'0.2 γcoll (4)

Wemeasure quadrupole damping rates as a baseline for comparison
with measured monopole damping rates.

The experiment is performed with 87Rb atoms evaporatively
cooled in a time-averaged orbiting potential11,12 magnetic trap with
harmonic confinement at frequency ω=2π(9.03(2)Hz), equipped
with additional magnetic coils that permit the six distinct parame-
ters of a 3D quadratic potential to be adjusted independently4. (See
Supplementary Information for more details.) We measure dipole
sloshing motion of atoms in the trap to determine î, ĵ, k̂, the prin-
cipal axes of the confining potential, and their associated trapping
frequencies, ωi, ωj, ωk. We characterize the residual asphericity,
(ωmax−ωmin)/ω̄, where ωmax, ωmin and ω̄ are respectively the max-
imum, minimum and mean of ωi, ωj, ωk. The residual asphericity
drifts with time, so we periodically retune and recharacterize the
trap to keep asphericity small (typically less than 0.002). To mini-
mize the undesirable mean-field potential, we work at temperature
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Figure 1 | Sample data for a driven quadrupole mode and monopole mode
in a spherical trap with residual asphericity less than 0.002 and a collision
rate of 7.4(3) s−1. Solid lines on the quadrupole data indicate a typical
fitting procedure, where individual periods taken in a single run are fitted
with an undamped sine wave to extract an instantaneous amplitude. The
oscillation amplitudes at various cycles are in turn fitted to an exponential
decay to extract the damping rates shown in Fig. 2. Only a small subset of
the monopole mode data is shown—the full set spans 30 s. Random
observable scatter in these points is predominantly due to small,
irreproducible fluctuations in initial conditions.

T well above the Bose–Einstein condensate transition temperature,
Tc, between 2Tc<T<3Tc.

We selectively drive monopole (quadrupole) motion by
symmetrically (asymmetrically) modulating the strength of the
confinement about its mean value. The cloud is then allowed to
evolve freely in the spherical trap before it is non-destructively
imaged using phase-contrast microscopy13,14. For each cycle of the
experiment, six images are taken of the cloud along two orthogonal
axes at an interval of 17ms to sample roughly 1.5 oscillation
periods. Cloud widths along each dimension, σi,j,k, are determined
using Gaussian surface fits of individual images to determine the
amplitude of the monopole and quadrupole modes. Amplitudes of
the monopole and quadrupole distortion are scaled by the average
width of the cloud during one cycle, given by the following relations

AM=
σ 2
i +σ

2
j +σ

2
k

〈σ 2
i +σ

2
j +σ

2
k 〉
−1

AQ=
2σ 2

k −σ
2
i −σ

2
j

〈σ 2
i +σ

2
j +σ

2
k 〉

Oscillation amplitudes are determined by fitting a cycle of oscilla-
tion in cloud width, obtained from each experimental run, with a
fixed frequency sine wave as indicated by the solid lines in Fig. 1.

Suppressed damping of the monopole mode relative to the
quadrupole mode can be seen in the sample data in Fig. 1, and
although the monopole damping rate is small, it is non-zero. We
characterize the monopole damping by comparing with quadrupole
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Figure 2 | Monopole and quadrupole damping rates as a function of
interatomic collision rate in a near-spherical trap. The dotted line indicates
the predicted quadrupole damping rates given in equation (4). Residual
asphericity was typically around 0.001, but always less than 0.0026. Cloud
full-width at half-maximum was approximately 115 µm. Error bars in the
monopole data are smaller than the data points. There is a multiplicative
uncertainty in the collision rate of 10%. Error bars are determined from
exponential fits to the decay of instantaneous amplitudes.

mode damping rates, which are expected to vary linearly with
collision rate. By adjusting the evaporation parameters in our
experiment, we can tune N , T , and the collision rate of the sample,
and then alternately drive quadrupole or monopole modes. A direct
comparison of quadrupole and monopole damping rates in a near-
spherical trap is shown in Fig. 2. The dependence of quadrupole
damping on collision rate is ΓQ = 0.20(3) γcoll, which is in good
agreement with equation (4). The small amount of residual damping
in the monopole mode is independent of collision rate and much
smaller than the damping in the quadrupole mode, as expected.
This, then, is the special-case exception that proves the general rule
of damping in the Boltzmann equation.

To understand the source of residualmonopole damping, we note
that Boltzmann’s result hinges on the assumption that the potential
is both isotropic and harmonic. An actual physical system can never
satisfy both of these conditions perfectly, and the remainder of this
letter is devoted to a discussion of the effects that small anisotropies
and anharmonicities have on the monopole damping rate.

Certain subtleties arise for gases in the collisionless limit
when anisotropies in the potential are small enough such that
trap frequencies differ by less than a few percent. In a totally
collisionless system, oscillations along the principal axes of the trap
are fully decoupled and monopole- or quadrupole-like oscillations
are undamped. If the principal trap frequencies differ such that
ωi=ωj 6=ωk, dephasing occurs between oscillations along different
principal axes and energy exchange between puremonopolemotion
and pure quadrupole motion occurs with a period given by

TMQ=
π

|ωk−ωi|

When collisions are included, the two modes become coupled
and, as the population in the quadrupole mode increases, so does
the damping15. This effect can be seen when TMQ< 1/ΓQ, where
multiple oscillations between monopole and quadrupole modes
occur. Data in Fig. 3 show oscillations between monopole and
quadrupole modes resulting from an initial monopole drive in
a trap with a residual asphericity of approximately 0.02. Energy
transfers back and forth between the individual modes, and the
damping rates for both modes are nearly equal, with a mean value
of Γ = 0.36(4) s−1. The collision rate is roughly 3.7 s−1, leading to
an expected quadrupole damping rate of 0.74 s−1 in a spherical
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Figure 3 | Monopole and quadrupole oscillation amplitudes in an
anisotropic trap where the residual asphericity is approximately 0.02. The
data points show the amplitudes of individual oscillations of the
instantaneous distortion, such as those indicated by the black lines in Fig. 1.
A monopole mode is initially driven and oscillations between the monopole
and quadrupole modes at a frequency1ω can be seen. The dotted line
fitting functions are e−Γ t(cos2 (1ωt+δ)+C) Amplitudes are determined
from sine-wave fits to individual oscillation measurements obtained from a
single experimental cycle. The error bars are calculated from scatter in the
sine-wave fits of data taken at repeated evolution times.

trap, which is twice the value of the measured damping rate in the
anisotropic trap. This is no surprise because the quadrupole mode
is effectively populated only half of the time, leading to the factor
of two decrease in the damping rate. If we decrease the amount
of anisotropy such that TMQ�1/ΓQ, the energy in the quadrupole
mode damps before it can fully couple back into the monopole
mode. One can see this effect in the data for the very spherical case
shown in Fig. 1, where the quadrupole mode damps before it can
exchange with the monopole mode. The data in Fig. 2 were taken
in traps with residual asphericities ranging from 0.0005–0.0026,
corresponding to 10.7 s<TMQ/2< 55.6 s. Whether plotted versus
collision rate, as shown, or versus TMQ, we see no systematic trend
in the residual monopole damping. Thus, some other physical effect
must provide the dominant source of residual monopole damping.

We now come to the second condition of Boltzmann’s result,
which requires that the potential be harmonic, and discuss the
effect of anharmonic perturbations to our trapping potential as a
source of damping. Amplitude-dependent frequency shifts caused
by anharmonic perturbations lead to dephasing of individual
particle trajectories, effectively damping the collective monopole
amplitude. Moreover, the anharmonic corrections to our potential
are asymmetric, giving rise to an amplitude-dependent anisotropy.
A calculation of the expected damping rate that takes into account all
of the relevant anharmonic corrections is difficult. But the effect can
be explored experimentally bymeasuring themonopole damping as
a function of cloud size, as shown in Fig. 4. The first point in Fig. 4
represents the average of the cloud size andmonopole damping data
in Fig. 2. The trend of the data in Fig. 4 suggests that the residual
damping seen even at the smallest cloud size of 115 µm is already
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Figure 4 | Damping of the monopole mode in a near-spherical trap as a
function of the spatial extent of the atom cloud. The fractional amplitude
of the excitation is the same for all points. Consistent with
anharmonicity-induced damping, we see the observed damping rate
decreases rapidly for smaller clouds, but the trend of the data suggests that
even for the smallest clouds (such as those used in Fig. 2) the residual
damping observed may be due to the onset of anharmonic e�ects. The
error bars are calculated using the same method as described in Fig. 3 and
the error in the cloud width measurements were typically 5%.

due to the onset of anharmonic effects. Unfortunately, we are unable
to work with smaller, and thus colder, clouds owing to limitations
in the signal-to-noise ratio of our imaging system, and the need to
keep T&2Tc.

In this paper, we present an experimental verification of the
absence of damping for the monopole mode of a thermal gas in
an isotropic harmonic potential. Whereas the damping is highly
suppressed, the small, but finite, relaxation of the monopole mode
is an artefact of small anharmonic perturbations to our trap,
which decrease with cloud size. We find that, in the limit of zero
anharmonic shifts, the damping of the monopole mode tends to
zero, as predicted by Boltzmann in 1876 (ref. 1).

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The undamped nature of the monopole mode is found by calculating the evolution
of the squared radius of the cloud and can be derived in various ways9. It is
instructive to see how the monopole non-damping result can be built up starting
from N =1, 2, etc . . . . In spherical symmetry, the radial motion of a single
particle of massm, energy E, and angular momentum L is governed by the
effective potential16

Ve=
L2

2mr 2
+

1
2
mω2r 2

so that the radial force is

m
d2r
dt 2
=−

d
dr

Ve (5)

and the kinetic energy is

1
2
m
(
dr
dt

)2

=E−Ve (6)

We note that d2r 2/dt 2=2(dr/dt)2+2rd2r/dt 2, and substituting (5) and (6) yields
the differential equation for r 2

d2

dt 2
r 2=−�2(r 2− r 20 ) (7)

where�≡2ω and r 20 =E/(mω2). So the squared radius undergoes sinusoidal
oscillations, or ‘monopole breathe’, around its mean value r 20 at a frequency of 2ω. If
there are two particles, 1 and 2, each with individual values of E, L and r 2, each
particle will oscillate at 2ω. Taking the sum of their respective differential
equations (7) yields

d2

dt 2
r 2t =−�

2(r 2t − r
2
0t ) (8)

where their combined squared radius, r 2t ≡ r 21 + r 22 , oscillates around its mean value,
r 20t≡(E1+E2)/(mω2). The magnitude of the collective breathe motion depends on
the magnitude and relative phase of the individual particle trajectories. These

individual quantities will change abruptly in the event of a collision. Assuming the
collisions are local, r1, r2, and thus r 2t will not change from the instant before to the
instant after the collision. Similarly, momentum and energy conservation imply
that (d/dt)r 2t and r 20t are unchanged by the collision.

These three continuities imply that the parameters and boundary conditions of
equation (8) are matched directly before and after a collision. This ensures that
neither the magnitude nor phase of the oscillation will change as the result of a
pairwise collision. If we instead consider N atoms where

r 2t =
N∑
i=1

r 2i

r 20t=
1

mω2

N∑
i=1

Ei

one can see that the monopole mode is left unperturbed—and in particular
undamped—by local, pairwise, momentum-, energy- and number-conserving
collisions. This argument is robust to quantum statistics—Bose or Fermi—and,
interestingly, in ref. 17, it is shown that a 1/r 2 term in the potential also preserves
monopole motion.

The above approach is consistent with a system in the hydrodynamic limit, with
total number of atoms so large that the function f (r,v, t) is essentially continuous.
However, in the hydrodynamic limit, mean-field effects can come into play, in
which case the monopole frequency is shifted18. In our experiment, the total
number of atoms, N , is only a few hundred thousand, and the mean-free path is
large compared to the spatial extent of the sample—we are not in the hydrodynamic
limit in any sense of the word—and mean-field effects can be neglected.
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