Letter | Published:

Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes

Nature Physics volume 2, pages 515520 (2006) | Download Citation

Subjects

Abstract

Single-walled carbon nanotubes (SWNTs) are π-conjugated, quasi-one-dimensional structures consisting of rolled-up graphene sheets that, depending on their chirality, behave as semiconductors or metals1; owing to their unique properties, they enable groundbreaking applications in mechanics, nanoelectronics and photonics2,3. In semiconducting SWNTs, medium-sized excitons (3–5 nm) with large binding energy and oscillator strength are the fundamental excitations4,5,6,7,8; exciton wavefunction localization and one-dimensionality give rise to a strong electron–phonon coupling9,10,11, the study of which is crucial for the understanding of their electronic and optical properties. Here we report on the use of resonant sub-10-fs visible pulses12 to generate and detect, in the time domain, coherent phonons in SWNT ensembles. We observe vibrational wavepackets for the radial breathing mode (RBM) and the G mode, and in particular their anharmonic coupling, resulting in a frequency modulation of the G mode by the RBM. Quantum-chemical modelling13 shows that this effect is due to a corrugation of the SWNT surface on photoexcitation, leading to a coupling between longitudinal and radial vibrations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (eds) Carbon Nanotubes : Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001).

  2. 2.

    , & Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

  3. 3.

    , & Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

  4. 4.

    & Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

  5. 5.

    , , , & Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. Phys. Rev. Lett. 92, 017403 (2004).

  6. 6.

    , , & The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

  7. 7.

    , , & Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

  8. 8.

    , , & Exciton in carbon nanotubes: An Ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).

  9. 9.

    , , & Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004).

  10. 10.

    , , & Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon assisted transitions. Phys. Rev. Lett. 94, 127403 (2005).

  11. 11.

    , & Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005).

  12. 12.

    et al. Pulse compression over 170-THz bandwidth in the visible by use of only chirped mirrors. Opt. Lett. 26, 1155–1157 (2001).

  13. 13.

    , , & Conformational dynamics of photoexcited conjugated molecules. Phys. Rev. Lett. 89, 097402 (2002).

  14. 14.

    et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997).

  15. 15.

    , & Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments. J. Chem. Phys. 92, 4012–4029 (1990).

  16. 16.

    , & Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414, 531–534 (2001).

  17. 17.

    , , & Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. Phys. Rev. Lett. 90, 047402 (2003).

  18. 18.

    et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

  19. 19.

    et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

  20. 20.

    et al. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92, 117402 (2004).

  21. 21.

    et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120, 3368–3373 (2004).

  22. 22.

    et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

  23. 23.

    et al. Optical transition energies for carbon nanotubes from resonant raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406 (2004).

  24. 24.

    et al. Resonant oscillators with carbon-nanotube torsion spring. Phys. Rev. Lett. 93, 146101 (2004).

  25. 25.

    , , & Selective cap opening in carbon nanotubes driven by laser-induced coherent phonons. Phys. Rev. Lett. 92, 117401 (2004).

  26. 26.

    , & Observation of fractional revivals of a molecular wave packet. Phys. Rev. A 54, R37–R40 (1996).

  27. 27.

    et al. Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys. Rev. B 66, 155418 (2002).

  28. 28.

    , , & AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

  29. 29.

    , & Microwave-assisted synthesis of a soluble single wall carbon nanotube derivative. Fuller. Nanotub. Carb. Nanostr. 11, 25–34 (2003).

  30. 30.

    , , & Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution. Phys. Rev. B 68, 193412 (2003).

  31. 31.

    Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, New York, 1995).

Download references

Acknowledgements

We thank G. Marcolongo for technical help and Z. V. Vardeny for useful discussions. M.M., G.L. and E.M. acknowledge financial support from MIUR (contracts PRIN-2004035502, FIRB-RBNE 033KMA, FIRB-RBNE01P4JF). The research at LANL is supported by the Center for Integrated Nanotechnology (CINT), Los Alamos LDRD Funds and the Office of Basic Energy Sciences, US Department of Energy. This support is gratefully acknowledged.

Author information

Affiliations

  1. CNR-INFM, National Laboratory for Ultrafast and Ultraintense Optical Science, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milan, Italy

    • A. Gambetta
    • , C. Manzoni
    • , G. Cerullo
    •  & G. Lanzani
  2. Department of Chemical Sciences, University of Padova, 1, Via Marzolo, 35131 Padova, Italy

    • E. Menna
    •  & M. Meneghetti
  3. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

    • S. Tretiak
    • , A. Piryatinski
    • , A. Saxena
    • , R. L. Martin
    •  & A. R. Bishop

Authors

  1. Search for A. Gambetta in:

  2. Search for C. Manzoni in:

  3. Search for E. Menna in:

  4. Search for M. Meneghetti in:

  5. Search for G. Cerullo in:

  6. Search for G. Lanzani in:

  7. Search for S. Tretiak in:

  8. Search for A. Piryatinski in:

  9. Search for A. Saxena in:

  10. Search for R. L. Martin in:

  11. Search for A. R. Bishop in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to G. Lanzani.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys345

Further reading