Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nematicity and quantum paramagnetism in FeSe


In common with other iron-based high-temperature superconductors, FeSe exhibits a transition to a ‘nematic’ phase below 90 K in which the crystal rotation symmetry is spontaneously broken. However, the absence of strong low-frequency magnetic fluctuations near or above the transition has been interpreted as implying the primacy of orbital ordering. In contrast, we establish that quantum fluctuations of spin-1 local moments with strongly frustrated exchange interactions can lead to a nematic quantum paramagnetic phase consistent with the observations in FeSe. We show that this phase is a fundamental expression of the existence of a Berry’s phase associated with the topological defects of a Néel antiferromagnet, in a manner analogous to that which gives rise to valence bond crystal order for spin-1/2 systems. We present an exactly solvable model realizing the nematic quantum paramagnetic phase, discuss its relation with the spin-1 J1J2 model, and construct a field theory of the Landau-forbidden transition between the Néel state and this nematic quantum paramagnet.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The stripe AF and the interactions in HK.
Figure 2: The monopole phase factors.
Figure 3: Schematic phase diagrams.
Figure 4: The nematic paramagnetic ground states of HK from equation (2).


  1. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  Article  Google Scholar 

  2. Figueirido, F. et al. Exact diagonalization of finite frustrated spin-1/2 Heisenberg models. Phys. Rev. B 41, 4619–4632 (1990).

    ADS  Article  Google Scholar 

  3. Jiang, H.-C., Yao, H. & Balents, L. Spin liquid ground state of the spin-1/2 square J1–J2 Heisenberg model. Phys. Rev. B 86, 024424 (2012).

    ADS  Article  Google Scholar 

  4. Gong, S.-S., Zhu, W., Sheng, D. N., Motrunich, O. I. & Fisher, M. P. A. Plaquette ordered phase and quantum phase diagram in the spin-1/2J1–J2 square Heisenberg model. Phys. Rev. Lett. 113, 027201 (2014).

    ADS  Article  Google Scholar 

  5. Haldane, F. D. M. O(3) nonlinear σ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029–1032 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  6. Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694–1697 (1989).

    ADS  Article  Google Scholar 

  7. Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nature Phys. 5, 674–650 (2009).

    Article  Google Scholar 

  8. Si, Q., Abrahams, E., Dai, J. & Zhu, J.-X. Correlation effects in the iron pnictides. New J. Phys. 11, 045001 (2009).

    ADS  Article  Google Scholar 

  9. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    ADS  Article  Google Scholar 

  10. Gretarsson, H. et al. Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy. Phys. Rev. B 84, 100509 (2011).

    ADS  Article  Google Scholar 

  11. Maletz, J. et al. Unusual band renormalization in the simplest iron-based superconductor FeSe1−x . Phys. Rev. B 89, 220506 (2014).

    ADS  Article  Google Scholar 

  12. Nakayama, K. et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys. Rev. Lett. 113, 237001 (2014).

    ADS  Article  Google Scholar 

  13. Watson, M. D. et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 91, 155106 (2015).

    ADS  Article  Google Scholar 

  14. Zhang, P. et al. Observation of two distinct d xz/d yz band splittings in FeSe. Phys. Rev. B 91, 214503 (2015).

    ADS  Article  Google Scholar 

  15. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    ADS  Article  Google Scholar 

  16. Chandra, P., Coleman, P. & Larkin, A. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    ADS  Article  Google Scholar 

  17. Fang, C., Yao, H., Tsai, W.-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    ADS  Article  Google Scholar 

  18. Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).

    ADS  Article  Google Scholar 

  19. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nature Mater. 14, 210–214 (2015).

    ADS  Article  Google Scholar 

  20. Böhmer, A. E. et al. Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: A combined thermodynamic and NMR study. Phys. Rev. Lett. 114, 027001 (2015).

    ADS  Article  Google Scholar 

  21. Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    ADS  Article  Google Scholar 

  22. Arovas, D. P., Auerbach, A. & Haldane, F. D. M. Extended Heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect. Phys. Rev. Lett. 60, 531–534 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  23. Peschel, I. & Emery, V. Calculation of spin correlations in two-dimensional Ising systems from one-dimensional kinetic models. Z. Phys. B 43, 241–249 (1981).

    ADS  MathSciNet  Article  Google Scholar 

  24. Jiang, H. C. et al. Phase diagram of the frustrated spatially-anisotropic s = 1 antiferromagnet on a square lattice. Phys. Rev. B 79, 174409 (2009).

    ADS  Article  Google Scholar 

  25. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    ADS  Article  Google Scholar 

  26. Abanov, A. & Wiegmann, P. Theta-terms in nonlinear sigma-models. Nucl. Phys. B 570, 685–698 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  27. Xu, C. & Ludwig, A. W. W. Nonperturbative effects of a topological theta term on principal chiral nonlinear sigma models in 2 + 1 dimensions. Phys. Rev. Lett. 110, 200405 (2013).

    ADS  Article  Google Scholar 

  28. Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

    ADS  Article  Google Scholar 

  29. Kasahara, S. et al. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. Proc. Natl Acad. Sci. USA 111, 16309–16313 (2014).

    ADS  Article  Google Scholar 

  30. Terashima, T. et al. Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements. Phys. Rev. B 90, 144517 (2014).

    ADS  Article  Google Scholar 

  31. Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Preprint at (2015)

  32. Glarum, S. H., Geschwind, S., Lee, K. M., Kaplan, M. L. & Michel, J. Observation of fractional spin S = 1/2 on open ends of S = 1 linear antiferromagnetic chains: Nonmagnetic doping. Phys. Rev. Lett. 67, 1614–1617 (1991).

    ADS  Article  Google Scholar 

  33. Glasbrenner, J. K., Mazin, I. I., Jeschke, H. O., Hirschfeld, P. J. & Valent, R. Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides. (2015)

  34. Rong, Y. & Si, Q. Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe. Preprint at (2015)

  35. Chubukov, A. V., Fernandes, R. M. & Schmalian, J. Origin of nematic order in FeSe. Phys. Rev. B 91, 201105 (2015).

    ADS  Article  Google Scholar 

Download references


We thank H. Jiang and T. Xiang for useful discussions. F.W. was supported by the National Key Basic Research Program of China (Grant No. 2014CB920902) and the National Science Foundation of China (Grant No. 11374018). S.A.K. was supported in part by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-76SF00515 at Stanford. D.-H.L. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231. D.-H.L. and S.A.K. would like to thank KITP for hospitality, supported in part by the National Science Foundation under Grant No. NSF PHY11-25915, where the collaboration started.

Author information

Authors and Affiliations



All authors contribute equally.

Corresponding author

Correspondence to Dung-Hai Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 887 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Kivelson, S. & Lee, DH. Nematicity and quantum paramagnetism in FeSe. Nature Phys 11, 959–963 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing