Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous nonlinear X-ray Compton scattering


X-ray scattering is typically used as a weak linear atomic-scale probe of matter. At high intensities, such as produced at free-electron lasers, nonlinearities can become important, and the probe may no longer be considered weak. Here we report the observation of one of the most fundamental nonlinear X-ray–matter interactions: the concerted nonlinear Compton scattering of two identical hard X-ray photons producing a single higher-energy photon. The X-ray intensity reached 4 × 1020 W cm−2, corresponding to an electric field well above the atomic unit of strength and within almost four orders of magnitude of the quantum-electrodynamic critical field. We measure a signal from solid beryllium that scales quadratically in intensity, consistent with simultaneous non-resonant two-photon scattering from nearly-free electrons. The high-energy photons show an anomalously large redshift that is incompatible with a free-electron approximation for the ground-state electron distribution, suggesting an enhanced nonlinearity for scattering at large momentum transfer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Scattering signal as a function of the FEL fundamental pulse energy and scattering angle.
Figure 3: Dependence of nonlinear Compton scattering on sample position relative to the FEL focus.
Figure 4: Dependence of the high-energy photon signal on the FEL fundamental photon energy.
Figure 5: Anomalous two-photon bound-state Compton scattering mechanism.


  1. James, R. W. The Optical Principles of the Diffraction of X-rays (Ox Bow Press, 1982).

    Google Scholar 

  2. Warren, B. E. X-ray Diffraction (Addison-Wesley, 1969).

    Google Scholar 

  3. Ladd, M. F. C. & Palmer, R. A. Structure Determination by X-ray Crystallography (Springer, 2003).

    Book  Google Scholar 

  4. Compton, H. The spectrum of scattered X-rays. Phys. Rev. 22, 409–413 (1923).

    ADS  Article  Google Scholar 

  5. Platzman, P. M. & Tzoar, N. X-ray scattering from an electron gas. Phys. Rev. 139, 410–413 (1965).

    ADS  Article  Google Scholar 

  6. Eisenberger, P. & Platzman, P. M. Compton scattering of X rays from bound electrons. Phys. Rev. A 2, 415–423 (1970).

    ADS  Article  Google Scholar 

  7. Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    ADS  Article  Google Scholar 

  8. Doumy, G. et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

    ADS  Article  Google Scholar 

  9. Hoener, M. et al. Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010).

    ADS  Article  Google Scholar 

  10. Fang, L. et al. Double core-hole production in N2: Beating the Auger clock. Phys. Rev. Lett. 105, 083005 (2010).

    ADS  Article  Google Scholar 

  11. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    ADS  Article  Google Scholar 

  12. Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).

    ADS  Article  Google Scholar 

  13. Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).

    ADS  Article  Google Scholar 

  14. Tamasaku, K. Double core-hole creation by sequential attosecond photoionization. Phys. Rev. Lett. 111, 043001 (2013).

    ADS  Article  Google Scholar 

  15. Tamasaku, K. et al. X-ray two-photon absorption competing against single and sequential multiphoton processes. Nature Photon. 8, 313–316 (2014).

    ADS  Article  Google Scholar 

  16. Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014).

    ADS  Article  Google Scholar 

  17. Eisenberger, P. & McCall, S. L. X-ray parametric conversion. Phys. Rev. Lett. 26, 684–688 (1971).

    ADS  Article  Google Scholar 

  18. Freund, I. & Levine, B. F. Parametric conversion of X rays. Phys. Rev. Lett. 23, 854–857 (1969).

    ADS  Article  Google Scholar 

  19. Brown, L. S. & Kibble, T. W. B. Interaction of intense laser beams with electrons. Phys. Rev. 133, A705–A719 (1964).

    ADS  Article  Google Scholar 

  20. Chen, S.-Y., Maksimchuk, A. & Umstadter, D. Experimental observation of relativistic nonlinear Thomson scattering. Nature 396, 653–655 (1998).

    ADS  Article  Google Scholar 

  21. Bula, C. et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116–3119 (1996).

    ADS  Article  Google Scholar 

  22. Glover, T. E. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

    ADS  Article  Google Scholar 

  23. Huang, Z. & Kim, K.-J. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel. Beams 10, 034801 (2007).

    ADS  Article  Google Scholar 

  24. Sauter, F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931).

    ADS  MATH  Google Scholar 

  25. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    ADS  MathSciNet  Article  Google Scholar 

  26. Boutet, S. & Williams, G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).

    ADS  Article  Google Scholar 

  27. Hubbell, J. H. & Seltzer, S. M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4) (National Institute of Standards and Technology, 2004);

    Google Scholar 

  28. Herrmann, S. et al. CSPAD-140 k: A versatile detector for LCLS experiments. Nucl. Instrum. Methods Phys. Res. A 718, 550–553 (2013).

    ADS  Article  Google Scholar 

  29. Sarachik, E. S. & Schappert, G. T. Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738–2753 (1970).

    ADS  Article  Google Scholar 

  30. Klein, O. & Nishina, Y. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52, 853–868 (1929).

    ADS  Article  Google Scholar 

  31. Hämäläinen, K. et al. High resolution Compton scattering study of Be. Phys. Rev. B 54, 5453–5459 (1996).

    ADS  Article  Google Scholar 

  32. Hopersky, A. N., Nadolinsky, A. M. & Novikov, S. A. X-ray-photon scattering by an excited atom. Phys. Rev. A 88, 032704 (2013).

    ADS  Article  Google Scholar 

  33. Hopersky, A. N., Nadolinsky, A. M., Novikov, S. A. & Yavna, V. A. X-ray-photon scattering by an excited and ionized atom. Phys. Rev. A 91, 022708 (2015).

    ADS  Article  Google Scholar 

  34. Henke, B.L., Gullikson, E.M. & Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS  Article  Google Scholar 

  35. Ratner, D. et al. Second and third harmonic measurements at the linac coherent light source. Phys. Rev. Spec. Top. Accel. Beams 14, 060701 (2011).

    ADS  Article  Google Scholar 

Download references


This work was supported primarily by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) and the Volkswagen Foundation. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. Preparatory measurements were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL). Both LCLS and SSRL are Office of Science User Facilities operated for the US Department of Energy Office of Science by Stanford University. M.F. acknowledges support from the Volkswagen Foundation. M.K. was supported by the DOE Office of Science Graduate Fellowship Program. M.T. and J.C. were supported by the Division of Materials Sciences and Engineering, BES, DOE under contract 51 DE-AC02-76SF00515. D.A.R., G.N. and S.Ghimire were supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division, DOE, BES, DOE. We thank R. Santra for discussions.

Author information

Authors and Affiliations



M.F. and D.A.R. conceived and with S.B., C.K., S.Guillet and J.B.H. designed the experiment. S.H., G.A.C., J.P., P.H., C.K., S.Guillet, S.B., G.J.W. and M.M. designed and fabricated the components of the experiment. M.F., M.T., J.C., S.Ghimire, S.S., M.K., M.J., T.H., C.B., G.N., Y.F., S.H., S.M., J.B.H. and D.A.R. carried out the experiment. S.B., G.J.W., M.M. and M.M.S. operated the coherent X-ray imaging instrument. M.F., M.T. and J.C. analysed the data. M.F. and D.A.R. interpreted the results with input from P.H.B., and M.F. and D.A.R. wrote the manuscript with input from all other authors.

Corresponding author

Correspondence to Matthias Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1623 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuchs, M., Trigo, M., Chen, J. et al. Anomalous nonlinear X-ray Compton scattering. Nature Phys 11, 964–970 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing