Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide

Abstract

Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. Whereas Dirac fermions have been known for decades, the latter two have not been observed as any fundamental particle in high-energy physics, and have emerged as a much-sought-out treasure in condensed matter physics. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. It has received worldwide interest and is believed to open the next era of condensed matter physics after graphene and three-dimensional topological insulators. However, experimental research has been held back because Weyl semimetals are extremely rare in nature. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical band structure calculations, identify the Weyl semimetal state in NbAs, which provides a real platform to test the potential of Weyltronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological electronic structure of NbAs: Weyl nodes and Fermi arcs.
Figure 2: Weyl cones in NbAs.
Figure 3: Observation of Fermi arc surface states on the (001) surface of NbAs.
Figure 4: Visualization of the co-propagating chiral modes and the structure of the tadpole Fermi arcs in NbAs.

Similar content being viewed by others

References

  1. Pal, B. P. Dirac, Majorana and Weyl fermions. Am. J. Phys. 79, 485–498 (2011).

    Article  ADS  Google Scholar 

  2. Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  3. Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

    Article  Google Scholar 

  4. Wilczek, F. Why are there analogies between condensed matter and particle theory? Phys. Today 51, 11–13 (1998).

    ADS  Google Scholar 

  5. Turner, A. M. & Vishwanath, A. in Topological Insulators (eds Franzand, M. & Molenkamp, L.) (Elsevier, 2013).

    Google Scholar 

  6. Haldane, F. D. M. Attachment of surface “Fermi arcs” to the bulk Fermi surface: “Fermi-level plumbing” in topological metals. Preprint at http://arXiv.org/abs/1401.0529 (2014).

  7. Hasan, M. Z., Xu, S.-Y. & Neupane, M. in Topological Insulators: Fundamentals and Perspectives (eds Ortmann, F., Roche, S. & Valenzuela, S. O.) 55–100 (John Wiley, 2015).

    Google Scholar 

  8. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  9. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  10. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  11. Xu, G. et al. Chern semi-metal and quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  12. Singh, B. et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B 86, 115208 (2012).

    Article  ADS  Google Scholar 

  13. Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−xyCdxMnyTe. Phys. Rev. B 89, 081106(R) (2014).

    Article  ADS  Google Scholar 

  14. Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

    Article  ADS  Google Scholar 

  15. Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  ADS  Google Scholar 

  16. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  17. Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    Article  ADS  Google Scholar 

  18. Wei, H., Chao, S.-P. & Aji, V. Excitonic phases from Weyl semimetals. Phys. Rev. Lett. 109, 196403 (2012).

    Article  ADS  Google Scholar 

  19. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  20. Ashby, P. E. C. & Carbotte, J. P. Magneto-optical conductivity of Weyl semimetals. Phys. Rev. B 87, 245131 (2013).

    Article  ADS  Google Scholar 

  21. Vazifeh, M. M. & Franz, M. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013).

    Article  ADS  Google Scholar 

  22. Ojanen, T. Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals. Phys. Rev. B 87, 245112 (2013).

    Article  ADS  Google Scholar 

  23. Hosur, P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B 86, 195102 (2012).

    Article  ADS  Google Scholar 

  24. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi-arcs in Weyl and Dirac semi-metals. Nature Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  25. Huang, S.-M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Nature Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  26. Weng, H., Fang, C., Fang, Z., Bernevig, A. & Dai, X. Weyl semimetal phase in non-centrosymmetric transition metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  27. Xu, S. Y. et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science 10.1126/science.aaa9297 (2015)

  28. Lv, B. Q. et al. Discovery of Weyl semimetal TaAs. Preprint at http://arXiv.org/abs/1502.04684 (2015).

  29. Furuseth, S. & Kjekshuh, A. The crystal structure of NbAs. Acta Crystallogr. 17, 1077–1078 (1964).

    Article  Google Scholar 

  30. Boller, H. & Parthe, E. The transposition structure of NbAs and of similar monophosphides and arsenides of niobium and tantalum. Acta Crystallogr. 16, 1095–1101 (1963).

    Article  Google Scholar 

  31. Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: Concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

    Article  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  33. Weng, H., Ozaki, T. & Terakura, K. Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions. Phys. Rev. B 79, 235118 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at Princeton University and Princeton-led synchrotron-based ARPES measurements were supported by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4547 (M.Z.H.). First-principles band structure calculations at National University of Singapore were supported by the National Research Foundation, Prime Minister’s Office, Singapore under its NRF fellowship (NRF Award No. NRF-NRFF2013-03). Single-crystal growth was supported by National Basic Research Program of China (Grant Nos. 2013CB921901 and 2014CB239302) and by DE-FG-02-05ER46200. T.-R.C. and H.-T.J. were supported by the National Science Council, Taiwan. H.-T.J. also thanks National Center for High-Performance Computing (NCHC), Computer and Information Network Center National Taiwan University (CINC-NTU), and National Center for Theoretical Sciences (NCTS), Taiwan, for technical support. L.H. is supported by CEM, an NSF MRSEC, under grant DMR-1420451. Experiments at the Ames Laboratory in the Iowa State University were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352, and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC) and the NERSC Supercomputing Center through DOE grant number DE-AC02-05CH11231. We gratefully thank S.-k. Mo, J. Denlinger, A. V. Fedorov, M. Hashimoto, M. Hoesch and T. Kim for their beamline assistance at the Advanced Light Source, the Stanford Synchrotron Radiation Lightsource and the Diamond Light Source. We thank D. Huse, I. Klebanov, A. Polyakov, P. Steinhardt, H. Verlinde and A. Vishwanath for discussions. T.-R.C. and H.L. acknowledge visiting scientist support from Princeton University. We also thank C.-H. Hsu for technical assistance in the theoretical calculations.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.X., N.A., I.B., G.B. and D.S.S. conducted the ARPES experiments with assistance from H.Z., V.N.S., D.M., Y.W., L.H., A.K. and M.Z.H.; Z.Y., C.Z. and S.J. grew the single-crystal samples; H.Z. conducted the STM measurements with assistance from G.B., S.-Y.X. and D.S.S.; T.-R.C., G.C., C.-C.L., S.-M.H., B.W., A.B., H.-T.J. and H.L. performed first-principles band structure calculations; T.N. did theoretical analyses; M.Z.H. was responsible for the overall direction, planning and integration among different research units.

Corresponding author

Correspondence to M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SY., Alidoust, N., Belopolski, I. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Phys 11, 748–754 (2015). https://doi.org/10.1038/nphys3437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing