Observation of Weyl nodes in TaAs


In 1929, H. Weyl proposed that the massless solution of the Dirac equation represents a pair of a new type of particles, the so-called Weyl fermions1. However, their existence in particle physics remains elusive after more than eight decades. Recently, significant advances in both topological insulators and topological semimetals have provided an alternative way to realize Weyl fermions in condensed matter, as an emergent phenomenon: when two non-degenerate bands in the three-dimensional momentum space cross in the vicinity of the Fermi energy (called Weyl nodes), the low-energy excitations behave exactly as Weyl fermions. Here we report the direct observation in TaAs of the long-sought-after Weyl nodes by performing bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy measurements. The projected locations at the nodes on the (001) surface match well to the Fermi arcs, providing undisputable experimental evidence for the existence of Weyl fermionic quasiparticles in TaAs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Crystal structure and electronic structure of TaAs.
Figure 2: Core-level spectra and electronic structure in the kx = 0 plane.
Figure 3: Band dispersions near the Weyl nodes W1.
Figure 4: Band dispersions near the Weyl nodes W2.
Figure 5: Relationship between bulk Weyl nodes and surface Fermi arcs.


  1. 1

    Weyl, H. Elektron und gravitation. Z. Phys. 56, 330–352 (1929).

  2. 2

    Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

  3. 3

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  4. 4

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

  5. 5

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

  6. 6

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  7. 7

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

  8. 8

    Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (i). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981).

  9. 9

    Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (ii). Intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981).

  10. 10

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  11. 11

    Huang, S. M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Nature Commun. 6, 7373 (2015).

  12. 12

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  13. 13

    Halász, G. B. & Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

  14. 14

    Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

  15. 15

    Lu, L., Fu, L., Joannopoulos, J. D. & Soljačíc, M. Weyl points and line nodes in gyroid photonic crystals. Nature Photon. 7, 294–299 (2013).

  16. 16

    Lu, L. et al. Experimental observation of Weyl points. Science http://dx.doi.org/10.1126/science.aaa9273 (2015).

  17. 17

    Dubček, T. et al. Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

  18. 18

    Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

  19. 19

    Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

  20. 20

    Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−xyCdxMnyTe. Phys. Rev. B 89, 081106 (2014).

  21. 21

    Singh, B. et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B 86, 115208 (2012).

  22. 22

    Bzdušek, T., Rüegg, A. & Sigrist, M. Weyl semimetal from spontaneous inversion symmetry breaking in pyrochlore oxides. Phys. Rev. B 91, 165105 (2015).

  23. 23

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  24. 24

    Xu, S. Y. et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science http://dx.doi.org/10.1126/science.aaa9297 (2015).

  25. 25

    Huang, X. C. et al. Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs. Preprint at http://arXiv.org/abs/1503.01304 (2015).

  26. 26

    Zhang, C. et al. Tantalum monoarsenide: An exotic compensated semimetal. Preprint at http://arXiv.org/abs/1502.00251 (2015).

  27. 27

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  28. 28

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

  29. 29

    Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

  30. 30

    Strocov, V. N. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130, 65–78 (2003).

  31. 31

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys. http://dx.doi.org/10.1038/nphys3425 (2015).

  32. 32


  33. 33

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Download references


We acknowledge help in plotting figures from H. Miao and W. L. Zhang. This work was supported by the Ministry of Science and Technology of China (Nos 2013CB921700, 2015CB921300, 2011CBA00108 and 2011CBA001000), the National Natural Science Foundation of China (Nos 11474340, 11422428, 11274362 and 11234014), the Chinese Academy of Sciences (No. XDB07000000), the Sino-Swiss Science and Technology Cooperation (No. IZLCZ2138954), and the Swiss National Science Foundation (No. 200021-137783).

Author information

H.D., T.Q. and M.S. conceived the experiments. B.Q.L., N.X. and J.Z.M. performed ARPES measurements with the assistance of C.E.M., F.B., V.N.S. and J.M. H.M.W., Z.F. and X.D. performed ab initio calculations. N.X., B.Q.L., J.Z.M., T.Q. and H.D. analysed the experimental data. N.X., B.Q.L. and H.M.W. plotted the figures. T.Q., H.D., H.M.W., M.S. and P.R. wrote the manuscript. X.C.H., L.X.Z. and G.F.C. synthesized the single crystals.

Correspondence to T. Qian or M. Shi or H. Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, B., Xu, N., Weng, H. et al. Observation of Weyl nodes in TaAs. Nature Phys 11, 724–727 (2015). https://doi.org/10.1038/nphys3426

Download citation

Further reading