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Linear relation between Heisenberg exchange and
interfacial Dzyaloshinskii–Moriya interaction in
metal films
Hans T. Nembach*, Justin M. Shaw, MathiasWeiler†, Emilie Jué and Thomas J. Silva

Proposals for novel spin-orbitronic logic1 andmemory devices2
are often predicated on assumptions as to how materials
with large spin–orbit coupling interact with ferromagnets
when in contact. Such interactions give rise to a host of
novel phenomena, such as spin–orbit torques3,4, chiral spin
structures5,6 and chiral spin torques7,8. These chiral properties
are related to the antisymmetric exchange, also referred to
as the interfacial Dzyaloshinskii–Moriya interaction (DMI;
refs 9,10). For numerous phenomena, the relative strengths
of the symmetric Heisenberg exchange and the DMI are of
great importance.Here,weuseoptical spin-wave spectroscopy
(Brillouin light scattering) to directly determine the volume-
averaged DMI vector D for a series of Ni80Fe20/Pt thin films,
and then compare the nearest-neighbour DMI coupling energy
with an independently measured value of the Heisenberg
exchange for each sample. We show that the dependence
on Ni80Fe20 thickness of both the microscopic symmetric and
antisymmetric exchange are nearly identical, consistent with
the notion that the fundamentals of the DMI and Heisenberg
exchange essentially share the same underlying physics, albeit
with di�erent symmetries, as was originally proposed by
Moriya11 for superexchange in magnetic oxides, and by Fert
and Levy12 for RKKY coupling in metallic spin glasses. Indeed,
our result demonstrates the generality of the original DMI
theory, insofar as the proportionality of the symmetric and
antisymmetric exchange is robust with regard to the details of
spin coupling for the material system in question. Although of
significant fundamental importance, this result also leads us to
a deeper understanding of DMI and how it could be optimized
for spin-orbitronic applications.

Recent experimental results have demonstrated how the
interplay of symmetric (Heisenberg) exchange and antisymmetric
(DMI) exchange, together with anisotropy, can give rise to a variety
of magnetostatic phenomena, such as magnetic skyrmion lattices13,
spiral spin structures14 and chiral domainwalls6. In bilayermaterials
with a sufficiently thin, perpendicularly magnetized ferromagnet
(FM) adjacent to a metal with large spin–orbit coupling in the
conduction band, a large DMI favours Néel domain walls with a
fixed chirality15, as opposed to Bloch walls. The combination of a
chiral domain wall structure and spin–orbit torque can give rise to
fast current-induced domain wall motion16. The direction and the
speed are both dependent on the sign and the strength of the DMI
and the spin–orbit torque7,8. Moreover, theory for a Rashba model
predicts that the interfacial spin–orbit torque is proportional to
the ratio of symmetric and antisymmetric exchange17. Thus, direct

determination of both the DMI and Heisenberg exchange is crucial
for an understanding of the underlying physics in such materials
systems and a better understanding of the spin–orbit torques.

So far, direct measurements of antisymmetric exchange are lim-
ited to exotic measurement techniques that can only be applied
to a few highly specialized sample systems. For example, the DMI
constant has been measured by means of synchrotron-based X-ray
scattering interferometry for the weak ferromagnet FeBO3 (ref. 18),
by spin-polarized electron energy loss spectroscopy for an atomic
bilayer of Fe on W(110) (ref. 19) and by spin-polarized scanning
tunnellingmicroscopy for atomicmonolayerMn onW(110) (ref. 5).
Until now, estimation of the antisymmetric exchange in the case of
arbitrary materials has been possible only via inference from indi-
rect measurement methods. These methods include both determi-
nation of the critical ferromagnetic layer thickness at the transition
from a Néel to a Bloch wall6, and measurements of domain wall
motion20,21. Furthermore, quantitative experimental comparison of
the symmetric and antisymmetric exchange is still outstanding.

Recent theory predicts an asymmetric dispersion shift of long-
wavelength thermal spin waves in magnetic thin films due to the
DMI (refs 22–26). Motivated by this theory, we used Brillouin
light scattering (BLS) to directly measure the predicted asymmetric
dispersion shift, which in turn allowed us to determine the
magnitude and direction of the DMI vector in a technological
relevant sample system: we used a series of sputtered multilayer
stacks consisting of SiN/Ni80Fe20(t)/Pt(6 nm)/Ta(3 nm)/substrate,
where t ranged from 1 nm to 13 nm. We independently determined
the symmetric exchange by fitting low-temperature magnetometry
data to the Bloch T3/2 law for the same samples. Comparison
of the two data sets allowed us to unambiguously determine the
proportionality of the symmetric and antisymmetric exchange.

Interfacial DMI in a thin ferromagnetic film adjacent to a high
spin–orbit material is mediated by an atom in the high spin–orbit
material. The Hamiltonian for the DMI between two spins Si and
Sj on the atomic sites i and j is given by HDMI =−Dij ·

(
Si×Sj

)
.

Here,Dij=Dijn×eij is the DMI vector, which lies in the symmetry-
breaking plane and is perpendicular to the unit vector that connects
sites i and j, eij

.
=rij/|rij|, as shown in Fig. 1a,b, and n is the interface

normal. Spin waves in the ferromagnet have a spatial chirality,
which depends on their propagation direction with respect to the
direction of the magnetization. In particular, for M‖ + z , spin
waves propagating in the −x direction have anticlockwise spatial
chirality (Fig. 1a), whereas those propagating in the +x direction
have clockwise chirality (Fig. 1b). However, the spatial chirality
favoured by the DMI is fixed by the sign of Dij, thus the presence
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Figure 1 | Modification of spin-wave propagation in the presence of interfacial DMI. a, Sketch of a Damon–Eshbach spin wave propagating at the
Ni80Fe20/Pt interface with wavevector kM‖−x with the magnetizationM‖+z. All individual moments precess in the external field H in an identical
(anticlockwise) manner, indicated by the blue arrows. The canted arrows depict the dynamic components of the spins at a snapshot in time. The dashed
arrows indicate the spatial chirality of the spin wave along x. Any two neighbouring spins (red arrows), are coupled by a DMI vector D (purple vector
pointing out of page) via a three-site exchange mechanism that includes a Pt atom (green atoms). The Pt atom serves to both break the symmetry and
provide the necessary spin–orbit coupling. The preferred chirality of the antisymmetric exchange indicated by the purple arrow circulating about the DMI
vector is identical to the spatial spin wave chirality. b, For kM‖+x, the spatial chirality of the spin wave is opposite to that favoured by the DMI. The
individual moments precess anticlockwise around the external magnetic field H as in a, but now kM points in the opposite direction. c, The central panel
shows schematic spin-wave dispersion curves in the absence of DMI (dashed) and with DMI (solid) forM‖±z, respectively. Sketches of the expected BLS
spectra for−kM (anti-Stokes process, annihilation of a magnon, propagation in the−x-direction) and+kM (Stokes process, generation of a magnon,
propagation in the+x-direction) are shown on the left and right sides of the lower panel, respectively.

of the DMI causes an asymmetric modification of the spin-wave
dispersion relation. For an in-planemagnetized filmwith spinwaves
propagating perpendicular to the magnetization direction, the DMI
modifies the frequency

fM= f0+1fDMI

of the spin waves22 (see middle panel of Fig. 1c.) Here, f0 is the spin-
wave frequency in the absence of the DMI and

1fDMI=

∣∣∣∣ g ‖µB

h

∣∣∣∣ sgn(Mz)
2DDMI

Ms
kx (1)

is the DMI-induced frequency shift, where DDMI ∝ Dij is the
volumetricDMI constant that determines the sign andmagnitude of
the DMI vector, g ‖ is the in-plane spectroscopic splitting factor,Ms
the saturation magnetization, k (with magnitude k) the wavevector
of the spin waves, µB the Bohr magneton and h Planck’s constant.
In the presence of the DMI, the spin-wave frequencies have a shift
linear in kx to either higher or lower frequencies, depending of the
propagation direction and the polarity of the static magnetization
component M. If the spin-wave spatial chirality is favoured by
the DMI, the spin-wave frequency is reduced. Conversely, it is
increased for the opposite chirality. Although the presence of surface
anisotropy can also lead to a non-reciprocal spin-wave dispersion27,
calculations presented in the Methods show that the asymmetric
frequency shift of magnetostatic surface waves due to interfacial
anisotropy is small for our measurements.

The dispersion characteristics of spin waves in thin magnetic
films can be measured with BLS. In our BLS measurements, a
laser is focused onto a sample, and the photons are inelastically
backscattered by the quantized spin waves—that is, magnons. Mo-
mentum conservation dictates that magnons propagating towards

the incoming laser beam must be annihilated (the anti-Stokes pro-
cess), and magnons propagating in the opposite direction must be
created (the Stokes process). (See Fig. 1c.) Energy conservation then
uniquely identifies the inelastic energy shift of the backscattered
photons with the magnon propagation direction: if the energy of
the scattered photon is increased (or decreased) by the magnon
energy, the direction of magnon propagation is either towards (or
away from) the laser beam. Thus the measurement of the scattered
photon energy can be used to determine the frequency difference of
spin waves propagating in opposite directions, as sketched in Fig. 1c.
We measured the spin-wave frequencies for the two field polarities
transverse to the scattering plane, and for the two propagation
directions. This yields four independentmeasurements of spin-wave
frequency as a function of magnetization polarity and propagation
direction. In Fig. 2a,b, normalized BLS spectra for Ni80Fe20 film
samples of thickness t=1.3 nm and 2.0 nm, respectively, on a 6 nm
Pt underlayer are shown. For comparison, we also show data for a
control sample film of 2.0 nm Ni80Fe20 without a Pt underlayer in
Fig. 2c. The BLS spectra of the samples with a Pt underlayer exhibit a
frequency shift of the order of 100MHz that changes sign withmag-
netization polarity or reversal of the spin-wave propagation direc-
tion. This frequency difference is larger for the sample with thinner
Ni80Fe20, as expected for an interfacial source of symmetry breaking,
whereas there is no frequency difference for the control sample, in
agreement with the absence of interfacial DMI in this case.

In Fig. 3, we show the t-dependence of the frequency shift
1fDMI averaged over the four possible combinations of the
magnetization polarity and propagation direction. Consistent with
the interfacial nature of the DMI, 1fDMI decreases with increasing
t . According to equation (1), Ms and g ‖ are required to determine
DDMI from the measured 1fDMI. Ms at 300K, measured by
means of superconducting quantum interference device (SQUID)
magnetometry, is shown in Fig. 4a. g ‖ is measured by ferromagnetic
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Figure 2 | Normalized spin-wave spectra, as measured by BLS. The
measurements were carried out for the two opposite magnetization
polarities (circles and triangles). The lines are fits to the data using the
transmission function of the tandem multi-pass interferometer in the BLS
spectrometer: ((f− f0)2+1f2)−6. The peak positions correspond to the
frequencies of Stokes (negative frequencies) and anti-Stokes (positive
frequencies) processes with a fixed wavevector of

∣∣k∣∣= 16.7 µm−1. a, Data
for a 1.3 nm Ni80Fe20 film with a 6 nm Pt underlayer with µ0H=±295mT.
b, Data for a 2.0 nm Ni80Fe20 film with a 6 nm Pt underlayer with
µ0H=±224mT. The spin-wave frequency is clearly shifted by reversal of
the magnetization direction in both a and b, and the frequency shift is
reduced for the sample with 2.0 nm of Ni80Fe20. c, Data for a reference
sample without Pt with µ0H=±295mT do not show a frequency shift that
depends on either the magnetization direction or the spin-wave
propagation direction.

resonance spectroscopy (see Supplementary Information). We use
equation (1) to calculate DDMI, shown in Fig. 4b. Under the
assumption that the DMI is a strictly interfacial property that is not
affected by the bulk properties of the magnetic film, the magnitude
of DDMI should be linearly proportional to 1/t and be zero in the
limit of an infinitely thick film.However, themeasuredDDMI exhibits
a nonlinear dependence on 1/t . This result implies that the DMI
strength at the interface itself changes with the film thickness. Under
the assumption that only the first monolayer of Ni80Fe20 at the Pt
interface contributes to the antisymmetric exchange, the strength of
the DMI at the interface Dint

DMI can be calculated from

Dint
DMI=DDMI

√
3
a

t (2)

where a=0.354 nm is the lattice constant forNi80Fe20.Dint
DMI is shown

in Fig. 4c (left scale) and has a non-trivial dependence on the
Ni80Fe20 thickness. In particular, we find that the magnitude of the
antisymmetric exchange varies by a factor of almost 2.5 over the
range of sample thicknesses. Using equation (6) in the Methods, the
largest value for the interatomic antisymmetric exchange energyDnn
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Figure 3 | DMI-induced spin-wave frequency shift. Frequency shift1fDMI
as a function of the reciprocal Ni80Fe20 thickness. The grey line is a guide to
the eye.1fDMI increases with 1/t, in agreement with expectations derived
from the interfacial nature of the DMI. The wavevector is given by the
measurement geometry and is fixed at

∣∣k∣∣= 16.7 µm−1. The error bars
include an upper bound for the frequency shift due to non-reciprocal
spin-wave dispersion of magnetostatic surface waves in the presence of
surface anisotropy. Any out-of-plane surface anisotropy will reduce the
DMI-induced frequency shift, and therefore results in asymmetric
error bars.

that we obtain (for t=6.1 nm) is −2.2+0.7
−0.4 meV. This is very similar

in magnitude to the recently reported result of +0.9meV for Fe/W
in ref. 19 and−1.05meV for a Co/Ni multilayer on Pt(111) in ref. 6.

Theoretical calculations for the Dzyaloshinskii–Moriya
interaction in bulk magnetic oxides and metallic spin glasses with
magnetic impurities predict that the symmetric and antisymmetric
exchange are proportional to each other11,12,28. It is therefore
possible to speculate that the thickness dependence of Dint

DMI is the
result of a coincidental thickness dependence of the symmetric
exchange for this particular system. The Heisenberg exchange
Hamiltonian that describes the interaction of two spins is given by
Hex=−JijSi ·Sj, with the exchange integral Jij=2g ‖µBDspin/

(
Msa5

)
for the fcc lattice, where Dspin is the spin-wave stiffness. Given that
Jij is strongly influenced by the local environment of the electron
wavefunction that overlaps sites i and j, it is always plausible that
there is a non-trivial thickness dependence for the volume-averaged
exchange. As we show below, this is indeed the case for our
particular sample system.

We measure the temperature dependence of the saturation
magnetic moment ms(T ) with a SQUID magnetometer and fit the
data with the Bloch T 3/2 law at low temperatures29,

ms (0 K)−ms (T )∝
(
kBT
D0K

spin

)3/2

where T is the temperature, D0 K
spin is the low-temperature spin-wave

stiffness, and kB is the Boltzmann constant29. To determine the
exchange constant A at 300K, we use

A .
=A(T=300K)=

M 300K
s D300K

spin

2g ‖µB

where we take the temperature-dependent renormalization of the
spin-wave stiffness into account, as detailed in the Supplementary
Information. In Fig. 4c (right scale), the thickness dependence of A
is shown. Although the microscopic origins of the variation in the
symmetric exchange with film thickness is unclear, it is an empirical
fact that both the symmetric exchange A and the antisymmetric
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Figure 4 | Thickness dependence of the symmetric and the antisymmetric
exchange. a, Thickness dependence of the magnetization,Ms, at 300K.
(The error bars are smaller than the symbol size.) b, The volumetric DMI
DDMI does not follow a strict 1/t dependence. c, The antisymmetric
exchange Dint

DMI at the Ni80Fe20/Pt interface (squares, left scale) and the
symmetric exchange A in the Ni80Fe20 bulk (open circles, right scale) are
linearly proportional over the entire range of measured thicknesses. The
proportionality of A and Dint

DMI was originally predicted by Moriya for
magnetic oxides11 and by Fert and Levy for metallic spin glasses12. (The
error bars for DDMI and Dint

DMI are the propagated errors of the averaged
frequency shift. The error bars for A reflect the variation of A when using
di�erent exponents for the renormalization of exchange at non-zero
temperatures, as explained in the Supplementary Information.)

exchange Dint
DMI exhibit the same non-trivial functional dependence

on reciprocal thickness. If we consider only nearest-neighbour
interactions, the ratio DDMI/A is proportional to the ratio of the
nearest-neighbour exchange integral Jnn and the magnitude of the
nearest-neighbour DMI Dnn,

Dnn

Jnn
=

2
√
2a
3
·
Dint

DMI

A
(3)

as shown in the Methods. From Dint
DMI and A in Fig. 4c, we find

by fitting equation (3) to the data that Dnn/Jnn =−(8.4± 0.3)%,
independent of Ni80Fe20 thickness. Any potential existence of a

gradient in the magnitude of the symmetric exchange A through
the thickness of the Ni80Fe20 can only be very small and would
only marginally affect the proportionality between Dnn and Jnn. The
homogeneity of the exchange is exemplified by the fact that the
volume-averaged magnetization for the 3.4 nm (16.6 monolayers)
sample is already equal to the bulk value ofµ0Ms∼1 T at 300K. The
linear proportionality between the symmetric and antisymmetric
exchange was first proposed for bulkmaterials in the original theory
of Moriya11. Similarly, such a proportionality was also predicted by
Fert et al.12,28, for metallic spin-glass systems. Our results confirm
that this proportionality also applies to two-dimensional systems at
the interface between a ferromagnetic layer and amaterial with large
spin–orbit coupling.

An important implication of our result is the independence of
interfacial chiral ordering on parameters that affect the Heisenberg
exchange, as the spin canting angle at adjacent atomic sites
is proportional to the ratio Dint

DMI/A. Thus, the methods and
results presented here not only serve to elucidate the fundamental
properties of the DMI, but may also have a substantial impact on
the methodology to successfully develop spin-orbitronic devices.

Note added in proof: During the review process further evidence of
the non-reciprocal spin-wave dispersion due to DMI has emerged:
Phys. Rev. Lett., 114, 047201 (2015); Phys. Rev. B, 91, 214409
(2015); Phys. Rev. B, 91, 180405(R) (2015); Appl. Phys. Lett., 106,
052403 (2015).

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Sample preparation. All samples were prepared by d.c. magnetron sputtering in
an Ar base pressure of∼0.07 Pa (∼0.5mtorr) and a chamber base pressure of
3×10−6 Pa (2×10−8 torr). Samples were rotated at 1–2Hz during deposition to
eliminate growth-induced anisotropy. The deposition rates were calibrated by
X-ray reflectometry. The SiN(5 nm–10 nm)/Ni80Fe20(t)/Pt(6 nm)/Ta(3 nm)/
substrate films were deposited on thermally oxidized Si. The silicon nitride
capping layer was sputter-deposited from a pure Si target in an Ar and N2 gas
mixture. The Ta seed layer induced a strong (111)-texture of both the Pt
and Ni80Fe20.

SQUIDmagnetometry.Wemeasured in-plane hysteresis curves at room
temperature to determine the saturation magnetizationMs(300K) of our samples.
We find thatMs(300K) decreases with decreasing Ni80Fe20 layer thickness. In
addition, we measured the dependence of the magnetic momentms(T ) on
temperature T while exposed to an applied field of µ0H=10mT. The saturation
magnetizationMs(0 K) was determined by extrapolation of the fit ofms(T ) to the
Bloch T 3/2 law29. To determine from these fits the spin-wave stiffness , D0K

spin, at 0 K
for the Ni80Fe20 thickness series, we first calculate the density of excited magnons at
a given temperature. This calculation takes into account finite-size effects due to
the reduced thickness of the Ni80Fe20 layer. The room-temperature exchange
constant A is then determined using a mean-field approach for the temperature
dependence of the exchange. The details on the determination of the exchange
constant, renormalization and calculation of the magnon density are given in the
Supplementary Information.

Brillouin light scattering spectroscopy.We use a Brillouin light scattering
spectrometer with a six-pass, tandem Fabry–Perot interferometer to measure
the thermal spin waves frequency at a fixed angle of incidence θ=45◦. For our
measurements the incident laser power was 40mW. A λ=532 nm laser
beam was focused on the sample with an f /1.2 lens. Thus the wavevector of
the measured spin waves is k=16.7 µm−1. The collimated backscattered light
was spatially filtered with an aperture (14mm in diameter) to reduce the
wavenumber uncertainty.

Ferromagnetic resonance measurements.We employed ferromagnetic resonance
spectroscopy with the external magnetic field both parallel and perpendicular to
the sample plane to determine the respective spectroscopic splitting factors g⊥ and
g ‖ and the perpendicular anisotropy field Hk. Details about the measurements are
given in the Supplementary Information.

If not otherwise stated, all error bars and all uncertainties stated in the text are
single standard deviation uncertainties.

Determination of the Dzyaloshinskii–Moriya exchange. The DMI Hamiltonian
for two atoms at sites i and j with the spins Si and Sj, respectively, is given by

Hij=−Dij ·
(
Si×Sj

)
whereDij∝rij× n̂ is the Dzyaloshinskii–Moriya vector, with rij being the vector
between sites i and j and n̂ is a unit vector along the axis of broken symmetry—that
is, the interface normal—for our particular case. The following calculation applies
to a single ferromagnetic monolayer in contact with a high spin–orbit material.
Following the analysis of Udvardi and Szunyogh, for the case where a spin wave
propagates perpendicular to the magnetization, the DMI contribution to the
spin-wave energy for an atomic monolayer is25

E int
DMI=−cS

∑
i 6=j

(Dij ·m̂) sin(k ·rij) (4)

where m̂ .
=M/Ms, k is the spin-wave wavevector, S is the total spin on each site, and

c=±1 is the spin-wave chirality. (The necessary factor S is missing in the original
version of equation (4) in ref. 25.) The chirality is defined by the orientation of the
magnetic moment at each lattice site25:

ei(k,c)=n1cos(k ·Ri)sin(θ)+cn2sin(k ·Ri)sin(θ)+m̂cos(θ)

Here, Ri is the position vector for the atomic site i,θ is the relative angle of the
moments and m̂, n1⊥m̂ and n2=n1×m̂ are unit vectors. In a (111)-textured fcc
crystal, the grains are randomly rotated around the surface normal and
equation (4) needs to be averaged about all possible orientations. Evaluation of
equation (4) in the long-wavelength limit then yields

E int
DMI
∼=

3cDnnSak
π
√
2

∫ 2π

0
cos2(φ)dφ

=
3
√
2
cDnnSak

where φ is the angle between rij and k, Dnn is the magnitude of the
nearest-neighbour DMI vector, and a is the lattice constant.

Damon–Eshbach modes with antisymmetric exchange. Following the analysis of
Moon et al.22, the spin-wave dispersion for spin waves in a thin film with k⊥M for
in-plane magnetization—that is, the Damon–Eshbach mode (DE)—in the presence
of interfacial DMI is22–26,30,31

ω =
µ0µBg ‖

}

√(
H+

2A
µ0Ms

k2−Hk+Ms
1−e−t |k|

t |k|

)

×

√(
H+

2A
µ0Ms

k2+Ms

(
1−

1−e−t |k|

t |k|

))

+ sgn(M)
µBg ‖

}
·
2DDMI

Ms
k (5)

where A is the exchange constant. The last term in equation (5) accounts for the
DMI, which causes a frequency shift linear in the spin-wave wavenumber k. The
sign of the DMI-induced frequency shift depends on the sign of DDMI, the
orientation of the magnetization (sign ofM) and the propagation direction of the
spin waves (sign of k). Here we are using a volumetric DMI constant instead of
including the DMI into the boundary conditions. The results for these two
approaches are in good agreement for |k| t<0.28, which is the case for our
measurements23. Comparison with equation (5), and accounting for the conversion
from the interfacial DMI to the volumetric DMI, as quantified in equation (2),
allows us to express the volumetric DMI constant DDMI in terms of the microscopic
Dnn as

DDMI=
3

2
√
2

(
a
√
3t

)
Ms

µBg ‖
(cDnnSa)

and in terms of the interfacial DMI constant Dint
DMI we have Dint

DMI= t
√
3/aDDMI,

which yields

Dint
DMI=

3
2
√
2

Ms

µBg ‖
(cDnnSa) (6)

In the main part of the manuscript we calculate the exchange constant:

A=
Msa2SJnn
g ‖µB

The ratio of the interfacial DMI constant and the exchange constant can
now be related to the fundamental quantities of the symmetric and
antisymmetric exchange:

Dint
DMI

A
=

3
2
√
2
1
a

(
Dnn

Jnn

)
Thus, if the antisymmetric exchange simply scales in proportion to the symmetric
exchange for a given material system, the ratio of the interfacial DMI and the
exchange constant should be constant.

Non-reciprocal spin-wave modes. For thin magnetic films, the DE spin-wave
modes are non-reciprocal—that is, the mode is localized either at the top or bottom
interface—depending on its propagation direction and the orientation ofM.
Hence, spin waves with k>0 are localized at the bottom (top) interface forM‖+z
(M‖−z) and spin waves with k<0 are localized at the top (bottom) interface for
M‖+z (M‖−z). Thus, if the two Ni80Fe20 interfaces were to have strongly differing
magnetic properties, it is possible that the non-reciprocal nature of the DE modes
could also give rise to an asymmetric spin-wave dispersion. In the following, we
will estimate an upper value for the frequency shift due to the non-reciprocal
character of the surface waves.

For the geometry used here, the spin wave propagating in the positive
x-direction is localized at the Pt interface for positive applied field, whereas the
spin wave propagating in the opposite direction is localized at the SiN interface. If
we neglect the symmetric-exchange contribution—that is, the long-wavelength
limit—the DE-mode amplitude decays exponentially into the film thickness with a
decay length=1/k. For the wavevector k=16.7 µm−1 of the spin waves, which are
measured in the BLS experiment, this results in a decay length δ=60 nm. This
yields a difference of the spin-wave amplitude between the two interfaces of 2 and
20% for the thinnest and thickest sample of the Ni80Fe20/Pt series, respectively. The
Pt interface induces a thickness-dependent perpendicular anisotropy field Hk (see
Supplementary Fig. 4 in the Supplementary Information). Thus, the frequency of
the spin wave with stronger localization at the Pt interface is shifted to lower
frequencies with respect to the spin wave propagating in the opposite direction. To
calculate the frequency shift due to the surface anisotropy we use a mean-field
approach. The anisotropy field H int

k (t) is assumed to be localized within the first
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monolayer of the Ni80Fe20 layer. The effective anisotropy for each spin wave
propagating in the positive and negative directions, respectively, is then calculated
by weighting the anisotropy field with the spin-wave amplitude for the respective
mode profilem±(t):

H eff±
k =

∫
H int

k m± (t)dt∫
m± (t)dt

The integrals extend over the Ni80Fe20 layer thickness. The estimate of the
frequency difference for the spin waves propagating in opposite directions is then
calculated with equation (5). We find a frequency shift for the samples of about
0.03GHz, almost independent of Ni80Fe20 thickness. Note that this is in qualitative
contrast to the strong dependence of the DMI-induced frequency shift on Ni80Fe20
thickness (see Fig. 3 in the main text). The frequency shift due to the surface
anisotropy would be even smaller if exchange were taken into account, because this

would lead to a more gradual decrease of the spin-wave amplitude from the
respective surface. Hence the value of 0.03 GHz is an upper limit for the
frequency shift due to the localization of the Damon–Eshbach modes. This upper
limit is included in the error bars in Fig. 3 in the main text. The frequency shift
due to the non-reciprocal character of the surface spin waves thus has only a
very marginal influence on the frequency shifts determined by BLS in
our measurements.

References
30. Demokritov, S. & Tsymbal, E. Light scattering from spin waves in thin films

and layered systems. J. Phys. Condens. Matter 6, 7145–7188 (1994).
31. Stamps, R. L. & Hillebrands, B. Dipolar interactions and the magnetic

behaviour of two-dimensional ferromagnetic systems. Phys. Rev. B 44,
12417–12423 (1991).

NATURE PHYSICS | www.nature.com/naturephysics

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nphys3418
www.nature.com/naturephysics

	Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films
	Main
	Methods
	Sample preparation.
	SQUID magnetometry.
	Brillouin light scattering spectroscopy.
	Ferromagnetic resonance measurements.
	Determination of the Dzyaloshinskii–Moriya exchange.
	Damon–Eshbach modes with antisymmetric exchange.
	Non-reciprocal spin-wave modes.

	Acknowledgements
	References


