Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structured quantum waves

Abstract

The study of structured optical waves has enhanced our understanding of light and numerous experimental methods now enable the control of the angular momentum and radial distributions. Recently, these wavestructuring techniques have been successfully applied to the generation and shaping of electron beams, leading to promising practical and fundamental advances. Here, we discuss recent progress in the emerging field of electron beam shaping, and explore the unique attributes that distinguish electron beams from their photonic analogues.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An example of structured light.
Figure 2: Electron structural features associated with angular momentum.
Figure 3: Electron structuring techniques.
Figure 4: Structured electron beams and their interaction with uniform magnetic fields.

References

  1. Loudon, R. & Baxter, C. Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. A 468, 1825–1838 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  2. Einstein, A. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

    MATH  Google Scholar 

  3. Barnett, S. M. Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010).

    ADS  Google Scholar 

  4. Darwin, C. Notes on the theory of radiation. Proc. R. Soc. Lond. A 136, 36–52 (1932).

    ADS  MATH  Google Scholar 

  5. Poynting, J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    ADS  MATH  Google Scholar 

  6. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS  Google Scholar 

  7. Ohanian, H. C. What is spin? Am. J. Phys. 54, 500–505 (1986).

    ADS  Google Scholar 

  8. Khrapko, R. Question#79. does plane wave not carry a spin? Am. J. Phys. 69, 405–405 (2001).

    ADS  Google Scholar 

  9. Humblet, J. Sur le moment d’impulsion d’une onde electromagnetique. Physica 10, 585–603 (1943).

    ADS  MathSciNet  MATH  Google Scholar 

  10. Allen, L. & Padgett, M. Response to question#79. does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002).

    ADS  Google Scholar 

  11. O’Neil, A., MacVicar, I., Allen, L. & Padgett, M. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    ADS  Google Scholar 

  12. He, H., Friese, M., Heckenberg, N. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    ADS  Google Scholar 

  13. Simpson, N., Dholakia, K., Allen, L. & Padgett, M. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52–54 (1997).

    ADS  Google Scholar 

  14. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    ADS  Google Scholar 

  15. Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Article  Google Scholar 

  16. Berry, M. V. Paraxial beams of spinning light. Proc. SPIE 3487 (1998)cbmvrn

  17. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    ADS  Google Scholar 

  18. Karimi, E. & Santamato, E. Radial coherent and intelligent states of paraxial wave equation. Opt. Lett. 37, 2484–2486 (2012).

    ADS  Google Scholar 

  19. Karimi, E. et al. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys. Rev. A 89, 013829 (2014).

    ADS  Google Scholar 

  20. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Google Scholar 

  21. Walsh, J. L. A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923).

    MathSciNet  MATH  Google Scholar 

  22. Salakhutdinov, V., Eliel, E. & Löffler, W. Full-field quantum correlations of spatially entangled photons. Phys. Rev. Lett. 108, 173604 (2012).

    ADS  Google Scholar 

  23. Romero, L. D., Andrews, D. & Babiker, M. A quantum electrodynamics framework for the nonlinear optics of twisted beams. J. Opt. B 4, S66–S72 (2002).

    Google Scholar 

  24. Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

    ADS  Google Scholar 

  25. Zhao, Y., Edgar, J. S., Jeffries, G. D., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    ADS  Google Scholar 

  26. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007).

    ADS  Google Scholar 

  27. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    ADS  Google Scholar 

  28. Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light 3, e167 (2014).

    MathSciNet  Google Scholar 

  29. Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

    ADS  Google Scholar 

  30. Foo, G. et al. Optical vortex coronagraph. Opt. Lett. 30, 3308–3310 (2005).

    ADS  Google Scholar 

  31. Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

    Google Scholar 

  32. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    ADS  Google Scholar 

  33. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

    ADS  Google Scholar 

  34. Bliokh, K. Y., Dennis, M. R. & Nori, F. Relativistic electron vortex beams: Angular momentum and spin–orbit interaction. Phys. Rev. Lett. 107, 174802 (2011).

    ADS  Google Scholar 

  35. Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. A 31, 765–783 (1925).

    MATH  Google Scholar 

  36. Grillo, V. et al. Generation of nondiffracting electron Bessel beams. Phys. Rev. X 4, 011013 (2014).

    Google Scholar 

  37. Durnin, J. Exact solutions for nondiffracting beams. i. The scalar theory. J. Opt. Soc. Am. 4, 651–654 (1987).

    ADS  Google Scholar 

  38. Siegman, A. E. Lasers (Mill Valley, 1986).

    Google Scholar 

  39. Bliokh, K. Y., Schattschneider, P., Verbeeck, J. & Nori, F. Electron vortex beams in a magnetic field: A new twist on Landau levels and Aharonov–Bohm states. Phys. Rev. X 2, 041011 (2012).

    Google Scholar 

  40. Lloyd, S. M., Babiker, M., Yuan, J. & Kerr-Edwards, C. Electromagnetic vortex fields, spin, and spin–orbit interactions in electron vortices. Phys. Rev. Lett. 109, 254801 (2012).

    ADS  Google Scholar 

  41. Greenshields, C., Stamps, R. L. & Franke-Arnold, S. Vacuum Faraday effect for electrons. New J. Phys. 14, 103040 (2012).

    ADS  Google Scholar 

  42. Guzzinati, G., Schattschneider, P., Bliokh, K. Y., Nori, F. & Verbeeck, J. Observation of the Larmor and Gouy rotations with electron vortex beams. Phys. Rev. Lett. 110, 093601 (2013).

    ADS  Google Scholar 

  43. Schattschneider, P. et al. Imaging the dynamics of free-electron Landau states. Nature Commun. 5, 4586 (2014).

    ADS  Google Scholar 

  44. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    ADS  Google Scholar 

  45. Beijersbergen, M., Coerwinkel, R., Kristensen, M. & Woerdman, J. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

    ADS  Google Scholar 

  46. Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    ADS  Google Scholar 

  47. McMoran, B. Electron Diffraction and Interferometry Using Nanostructure PhD thesis, Univ. Arizona (2009)

  48. Bazhenov, V. Y., Vasnetsov, M. & Soskin, M. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431 (1990).

    Google Scholar 

  49. Grillo, V. et al. Highly efficient electron vortex beams generated by nanofabricated phase holograms. Appl. Phys. Lett. 104, 043109 (2014).

    ADS  Google Scholar 

  50. Shiloh, R., Lereah, Y., Lilach, Y. & Arie, A. Sculpturing the electron wave function using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).

    Google Scholar 

  51. McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    ADS  Google Scholar 

  52. Grillo, V. et al. Holographic generation of highly twisted electron beams. Phys. Rev. Lett. 114, 034801 (2015).

    ADS  Google Scholar 

  53. Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).

    ADS  Google Scholar 

  54. Clark, L. et al. Exploiting lens aberrations to create electron-vortex beams. Phys. Rev. Lett. 111, 064801 (2013).

    ADS  Google Scholar 

  55. Béché, A., Van Boxem, R., Van Tendeloo, G. & Verbeeck, J. Magnetic monopole field exposed by electrons. Nature Phys. 10, 26–29 (2014).

    ADS  Google Scholar 

  56. Garraway, B. & Stenholm, S. Does a flying electron spin? Contemp. Phys. 43, 147–160 (2002).

    ADS  Google Scholar 

  57. McGregor, S., Bach, R. & Batelaan, H. Transverse quantum Stern-Gerlach magnets for electrons. New J. Phys. 13, 065018 (2011).

    ADS  Google Scholar 

  58. Karimi, E., Marrucci, L., Grillo, V. & Santamato, E. Spin-to-orbital angular momentum conversion and spin-polarization filtering in electron beams. Phys. Rev. Lett. 108, 044801 (2012).

    ADS  Google Scholar 

  59. Hayrapetyan, A. G. et al. Interaction of relativistic electron-vortex beams with few-cycle laser pulses. Phys. Rev. Lett. 112, 134801 (2014).

    ADS  Google Scholar 

  60. Lloyd, S., Babiker, M. & Yuan, J. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys. Rev. Lett. 108, 074802 (2012).

    ADS  Google Scholar 

  61. Yuan, J., Lloyd, S. M. & Babiker, M. Chiral-specific electron-vortex-beam spectroscopy. Phys. Rev. A 88, 031801(R) (2013).

    ADS  Google Scholar 

  62. Schattschneider, P., Löffler, S., Stöger-Pollach, M. & Verbeeck, J. Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81–85 (2014).

    Google Scholar 

  63. Ivanov, I. P. & Karlovets, D. V. Polarization radiation of vortex electrons with large orbital angular momentum. Phys. Rev. A 88, 043840 (2013).

    ADS  Google Scholar 

  64. Kaminer, I., Nemirovsky, J., Rechtsman, M., Bekenstein, R. & Segev, M. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nature Phys. 11, 261–267 (2015).

    ADS  Google Scholar 

  65. Verbeeck, J. et al. Atomic scale electron vortices for nanoresearch. Appl. Phys. Lett. 99, 203109 (2011).

    ADS  Google Scholar 

  66. Lloyd, S., Babiker, M. & Yuan, J. Mechanical properties of electron vortices. Phys. Rev. A 88, 031802 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

J.H., R.W.B. and E.K. acknowledge the support of the Canada Excellence Research Chairs (CERC) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Karimi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harris, J., Grillo, V., Mafakheri, E. et al. Structured quantum waves. Nature Phys 11, 629–634 (2015). https://doi.org/10.1038/nphys3404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3404

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing