Progress Article | Published:

Structured quantum waves

Nature Physics volume 11, pages 629634 (2015) | Download Citation

Abstract

The study of structured optical waves has enhanced our understanding of light and numerous experimental methods now enable the control of the angular momentum and radial distributions. Recently, these wavestructuring techniques have been successfully applied to the generation and shaping of electron beams, leading to promising practical and fundamental advances. Here, we discuss recent progress in the emerging field of electron beam shaping, and explore the unique attributes that distinguish electron beams from their photonic analogues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. A 468, 1825–1838 (2012).

  2. 2.

    Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

  3. 3.

    Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010).

  4. 4.

    Notes on the theory of radiation. Proc. R. Soc. Lond. A 136, 36–52 (1932).

  5. 5.

    The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

  6. 6.

    Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

  7. 7.

    What is spin? Am. J. Phys. 54, 500–505 (1986).

  8. 8.

    Question#79. does plane wave not carry a spin? Am. J. Phys. 69, 405–405 (2001).

  9. 9.

    Sur le moment d’impulsion d’une onde electromagnetique. Physica 10, 585–603 (1943).

  10. 10.

    & Response to question#79. does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002).

  11. 11.

    , , & Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

  12. 12.

    , , & Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

  13. 13.

    , , & Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52–54 (1997).

  14. 14.

    & Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

  15. 15.

    , , & Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

  16. 16.

    Paraxial beams of spinning light. Proc. SPIE 3487 (1998)cbmvrn

  17. 17.

    et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

  18. 18.

    & Radial coherent and intelligent states of paraxial wave equation. Opt. Lett. 37, 2484–2486 (2012).

  19. 19.

    et al. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys. Rev. A 89, 013829 (2014).

  20. 20.

    , , & Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

  21. 21.

    A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923).

  22. 22.

    , & Full-field quantum correlations of spatially entangled photons. Phys. Rev. Lett. 108, 173604 (2012).

  23. 23.

    , & A quantum electrodynamics framework for the nonlinear optics of twisted beams. J. Opt. B 4, S66–S72 (2002).

  24. 24.

    , & Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

  25. 25.

    , , , & Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

  26. 26.

    , , , & Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007).

  27. 27.

    , & Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

  28. 28.

    et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light 3, e167 (2014).

  29. 29.

    , , & Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

  30. 30.

    et al. Optical vortex coronagraph. Opt. Lett. 30, 3308–3310 (2005).

  31. 31.

    , & Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

  32. 32.

    , & Twisted photons. Nature Phys. 3, 305–310 (2007).

  33. 33.

    , , & Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

  34. 34.

    , & Relativistic electron vortex beams: Angular momentum and spin–orbit interaction. Phys. Rev. Lett. 107, 174802 (2011).

  35. 35.

    Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. A 31, 765–783 (1925).

  36. 36.

    et al. Generation of nondiffracting electron Bessel beams. Phys. Rev. X 4, 011013 (2014).

  37. 37.

    Exact solutions for nondiffracting beams. i. The scalar theory. J. Opt. Soc. Am. 4, 651–654 (1987).

  38. 38.

    Lasers (Mill Valley, 1986).

  39. 39.

    , , & Electron vortex beams in a magnetic field: A new twist on Landau levels and Aharonov–Bohm states. Phys. Rev. X 2, 041011 (2012).

  40. 40.

    , , & Electromagnetic vortex fields, spin, and spin–orbit interactions in electron vortices. Phys. Rev. Lett. 109, 254801 (2012).

  41. 41.

    , & Vacuum Faraday effect for electrons. New J. Phys. 14, 103040 (2012).

  42. 42.

    , , , & Observation of the Larmor and Gouy rotations with electron vortex beams. Phys. Rev. Lett. 110, 093601 (2013).

  43. 43.

    et al. Imaging the dynamics of free-electron Landau states. Nature Commun. 5, 4586 (2014).

  44. 44.

    & Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

  45. 45.

    , , & Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

  46. 46.

    , & Production and application of electron vortex beams. Nature 467, 301–304 (2010).

  47. 47.

    Electron Diffraction and Interferometry Using Nanostructure PhD thesis, Univ. Arizona (2009)

  48. 48.

    , & Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431 (1990).

  49. 49.

    et al. Highly efficient electron vortex beams generated by nanofabricated phase holograms. Appl. Phys. Lett. 104, 043109 (2014).

  50. 50.

    , , & Sculpturing the electron wave function using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).

  51. 51.

    et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

  52. 52.

    et al. Holographic generation of highly twisted electron beams. Phys. Rev. Lett. 114, 034801 (2015).

  53. 53.

    , , , & Generation of electron Airy beams. Nature 494, 331–335 (2013).

  54. 54.

    et al. Exploiting lens aberrations to create electron-vortex beams. Phys. Rev. Lett. 111, 064801 (2013).

  55. 55.

    , , & Magnetic monopole field exposed by electrons. Nature Phys. 10, 26–29 (2014).

  56. 56.

    & Does a flying electron spin? Contemp. Phys. 43, 147–160 (2002).

  57. 57.

    , & Transverse quantum Stern-Gerlach magnets for electrons. New J. Phys. 13, 065018 (2011).

  58. 58.

    , , & Spin-to-orbital angular momentum conversion and spin-polarization filtering in electron beams. Phys. Rev. Lett. 108, 044801 (2012).

  59. 59.

    et al. Interaction of relativistic electron-vortex beams with few-cycle laser pulses. Phys. Rev. Lett. 112, 134801 (2014).

  60. 60.

    , & Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys. Rev. Lett. 108, 074802 (2012).

  61. 61.

    , & Chiral-specific electron-vortex-beam spectroscopy. Phys. Rev. A 88, 031801(R) (2013).

  62. 62.

    , , & Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81–85 (2014).

  63. 63.

    & Polarization radiation of vortex electrons with large orbital angular momentum. Phys. Rev. A 88, 043840 (2013).

  64. 64.

    , , , & Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nature Phys. 11, 261–267 (2015).

  65. 65.

    et al. Atomic scale electron vortices for nanoresearch. Appl. Phys. Lett. 99, 203109 (2011).

  66. 66.

    , & Mechanical properties of electron vortices. Phys. Rev. A 88, 031802 (2013).

Download references

Acknowledgements

J.H., R.W.B. and E.K. acknowledge the support of the Canada Excellence Research Chairs (CERC) Program.

Author information

Affiliations

  1. Department of Physics, University of Ottawa, 25 Templeton St. Ottawa, Ontario K1N 6N5, Canada

    • Jérémie Harris
    • , Robert W. Boyd
    •  & Ebrahim Karimi
  2. CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a I-41125 Modena, Italy

    • Vincenzo Grillo
    • , Gian Carlo Gazzadi
    •  & Stefano Frabboni
  3. Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a I-41125 Modena, Italy

    • Erfan Mafakheri
    •  & Stefano Frabboni
  4. Institute of Optics, University of Rochester, Rochester, New York 14627, USA

    • Robert W. Boyd

Authors

  1. Search for Jérémie Harris in:

  2. Search for Vincenzo Grillo in:

  3. Search for Erfan Mafakheri in:

  4. Search for Gian Carlo Gazzadi in:

  5. Search for Stefano Frabboni in:

  6. Search for Robert W. Boyd in:

  7. Search for Ebrahim Karimi in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ebrahim Karimi.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3404

Further reading