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Network motifs emerge from interconnections
that favour stability
Marco Tulio Angulo1,2, Yang-Yu Liu2,3* and Jean-Jacques Slotine4,5*
The microscopic principles organizing dynamic units in com-
plex networks—from proteins to power generators—can be
understood in terms of network ‘motifs’: small interconnection
patterns that appear much more frequently in real networks
thanexpected in randomnetworks1,2.Whenconsideredassmall
subgraphs isolated from a large network, these motifs are
more robust to parameter variations, easier to synchronize
than other possible subgraphs, and can provide specific
functionalities3–15. But one can isolate these subgraphs only by
assuming, for example, a significant separation of timescales,
and the origin of network motifs and their functionalities when
embedded in larger networks remain unclear. Here we show
that most motifs emerge from interconnection patterns that
best exploit the intrinsic stability characteristics at di�erent
scales of interconnection, fromsimplenodes towholemodules.
This functionality suggests an e�cient mechanism to stably
build complex systems by recursively interconnecting nodes
and modules as motifs. We present direct evidence of this
mechanism in several biological networks.

In complex natural systems such as biological networks, the
particular topologies of network motifs have been shaped by evolu-
tion. Evolution and natural selection accumulate stable intermediate
components (that is, nodes), which are interconnected to formmore
complex systems. Thismodular design principle is observed atmany
scales, from the motion control architecture of vertebrates to the
emotional response of human beings16–19. Yet, in general, the inter-
connection of stable componentsmay result in an unstable system20.
Thus, it is natural to consider that nature favours interconnections
that make it easier to obtain a stable networked system. In this letter,
we show thatmost networkmotifs in real networks emerge precisely
from such consideration. This property can be used in building
larger systems by applying it at different scales of interconnection.

To start, we consider a set of N nodes with scalar dynamics of
the form

ẋi= fi(xi, t)+ui, yi=xi (1)

with initial condition xi(t0)= xi0, i= 1, . . . ,N . Here the scalars xi,
ui and yi are the state, input and output of node i, respectively.
The state of a node may represent the expression level of a gene,
the concentration of a metabolite, the charge of a capacitor, and so
on. Vector dynamics are discussed later in the context of modules.
The functions fi(xi, t), which are typically nonlinear, determine the
nodal dynamics.

Nodes interact with each other by interconnecting their inputs
u=col(u1, . . . ,uN )∈RN with their outputs y=col(y1, . . . ,yN )∈ RN .

Analysing the stability of networked systems with nonlinear
interconnections

u=g (y), g : RN
→RN (2)

requires knowledge of the functional form and parameters of the
interconnection g (y) and nodal dynamics fi(xi, t), which is hard to
obtain in most systems (Supplementary Information 1.7). Linear
interconnections do not require such knowledge, enabling us to
quantify the contribution of the interconnection to the stability of
the networked systemwithout the need of detailed knowledge of the
nodal dynamics. More precisely, by considering

u=Ay (3)

where A= (aij) ∈RN×N is the weighted adjacency matrix of the
interconnection network, our analysis requires a single constant
per node—its contraction rate, defined later on—characterizing
its intrinsic stability properties. Here aij 6= 0 represents a directed
edge from node j to node i. In general, the linear interconnection
(3) can be used to approximate (2) in some working range5,7,21.
Furthermore, diffusive coupling of oscillators and several models of
neural networks actually use linear interconnection networks22–24.

Our standing assumption on the isolated nodes is that they are
stable, and we aim to quantify for which interconnections it is
easier to get a stable networked system. The separate contribution
of the isolated nodes and the interconnection to the stability of
the networked system is made transparent by using contraction
theory. Contraction theory is a tool to analyse the stability of
dynamic systems based on a differential-geometric viewpoint
inspired by fluid mechanics25, in contrast to Lyapunov stability
theory, which is based on analogues of mechanical energy. A
system is contracting if the trajectories associated with any two
initial conditions exponentially converge towards each other. More
precisely, a dynamic system of the form

ẋ= f (x , t), x(t0)=x0 (4)

with state x∈RN is contracting with rate α>0 if there exists a vector
norm | · | and constant β>0 such that for any two initial conditions
xa,xb∈RN their corresponding trajectories x(xa, ·), x(xb, ·) satisfy

|x(xa, t)−x(xb, t)|≤β|xa−xb|e−α(t−t0), ∀t≥ t0

Denote by J (x , t) = ∂x f (x , t) the Jacobian of system (4). Then
contraction is equivalent to the existence of amatrixmeasureµ such
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Figure 1 | Mean contraction loss of all 3- or 4-node subgraphs. a, Mean contraction loss of all subgraphs with 3 and 4 nodes (amax= 1), the same colour
indicates the same number of edges. Vertical dashed lines separate groups of subgraphs with the same number of edges (density classes) in increasing
order from left to right (2 to 6 edges for 3-node subgraphs, and 3 to 12 edges for 4-node subgraphs). Grey markers show the network motifs reported in
ref. 1, circles denote biological networks (gene transcription, neurons and food webs) and triangles denote man-made networks (electronic circuits and the
World WideWeb). Motif M2 appears in both gene regulatory networks and some electronic circuits (forward logic chips). Error bars represent standard
deviation. b, The 12 network motifs reported in ref. 1.

thatµ(J (x , t))≤−α, for all x∈RN and t≥ t0 (refs 25,26). Any vector
norm | · | induces a matrix norm ‖·‖ and a matrix measure µ by

‖A‖:= sup
|x|=1
|Ax|, µ(A) := lim

h↘0

‖I+hA‖−1
h

both of which are well defined for any matrix A ∈ RN×N . In
particular, we prove that

µA(A) :=min
µ∈M

µ(A)=max
1≤i≤N

Reλi(A) (5)

whereM is the set of all matrix measures inRN×N and λi(A) are the
eigenvalues of A (Theorem 1 in Supplementary Information 1). We
use the notationµA to emphasize that the matrix measure achieving
the minimum in (5) depends on the matrix A itself. Recall also that
matrix measures are subadditive: µ(A1+A2)≤µ(A1)+µ(A2), for
any A1,A2∈RN×N .

In the case of scalar isolated systems, as in (1) with
ui = 0, contraction with rate αi is equivalent to the condition
Ji(xi, t)=∂xi f (xi, t)≤−αi for all xi ∈R and t ≥ t0. The contraction
property of isolated nodes might be lost when they are
interconnected, so that the networked system is no longer
contracting. Indeed, owing to the subadditivity of matrix measures,
the Jacobian of the networked system (1)–(3) satisfies

µ(J (x , t))≤µ(diag{Ji})+µ(A)≤µ(−Dα)+µ(A) (6)

where Ji= Ji(xi, t) and Dα=diag(α1, . . . ,αN ).
We define µ(A) as the contraction loss of the interconnection

network. Then the inequality (6) indicates that the networked sys-
tem remains contracting if the effective contraction of the isolated
nodes µ(−Dα)<0 dominates the contraction loss µ(A) due to the
interconnection. Consequently, interconnections with small con-
traction loss best favour stability, as they require smaller contraction
rates from the isolated nodes to keep thewhole network contracting.

The choice of matrix measure in (6) is a degree of freedom
that should be optimized to make µ(−Dα)+ µ(A) as negative

as possible. Solving this optimization problem is not trivial, as
the matrix measure minimizing the contraction loss µ(A) might
also decrease the effective contraction of the isolated nodes (that
is, making the term µ(−Dα) less negative). In Proposition 1 of
Supplementary Information 1, we prove that the optimal matrix
measure is given byµA defined in (5), provided that the contraction
rates of all nodes are equal, or that the off-diagonal entries of
A are non-negative (that is, interactions between nodes are only
positive). Choosing the matrix measure (5), the contraction loss
of some classes of networks depends only on their topology. For
example, Proposition 2a of Supplementary Information 1.4 shows
that acyclic networks have zero contraction loss regardless of their
edge-weights (positive or not). This implies that feedforward and
bifan interconnections, and their generalizations27, always have zero
contraction loss (Supplementary Information 1.5). Moreover, non-
positive contraction loss for interactions with arbitrary strength
requires that reciprocal interactions have opposite signs, and the
absence of cycles (feedback loops) of length 3 or more, see
Proposition 2b in Supplementary Information 1.4. In particular, the
contraction loss of negative feedback between two nodes is at most
zero (Supplementary Information 1.4).

Interestingly, the presence of negative interactions always
improves the stability of the networked system by decreasing the
contraction loss, in the sense that µ(A)≤µ(Ā) for any µ∈M and
A= (aij)∈RN×N , see Lemma 1 in Supplementary Information 1.3.
Here Ā= (āij)∈RN×N is defined as āii = aii and āij = |aij| if j 6= i.
Therefore, it is possible to add functionalities requiring negative in-
teractions by replacing a positive interaction by a negative one with-
out decreasing the stability of the networked system. This result mo-
tivated us to consider positive interactions only in the rest of the pa-
per because they provide the worst-case analysis of the contraction
loss of an interconnection with respect to all possible edge-weights,
and their contraction loss can be optimally computed using µA.

We analysed the contraction loss of all 3- or 4-node subgraphs
and identified those with the lowest contraction loss in their density
class, defined as the set of all subgraphs with the same number of
nodes and edges5. Those subgraphs with lowest contraction loss best
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Figure 2 | Relative contraction loss versus normalized Z-score. Each marker represents a subgraph of the neuron network of C. elegans, the gene
transcription networks of yeast and E. coli, and the food web at Saint Martin Island. Subgraphs with high Z-score tend to have small relative contraction
loss. In the case of 3-node subgraphs, under-represented subgraphs (anti-motifs) tend to have high relative contraction loss.

favour the stability of the networked system. As the precise value of
the interactions may change from one system to other, we randomly
select them from a uniform distribution on [0, amax] to form an
ensemble of 10,000 weighted adjacency matrices with the same
connectivity pattern. From this ensemble the mean contraction loss
〈µA〉 is computed, see Fig. 1. Supplementary Information 2 details
how to compute analytically and numerically the mean contraction
loss of a subgraph. The observed order of the subgraphs according
to their mean contraction loss is independent of the interaction
strength distribution and the value of amax > 0 (Supplementary
Information 3). See also Supplementary Information 4 for results
using a different matrix measure to compute the contraction loss.

We find that all motifs reported in ref. 1 (except M3, M9 andM12,
which contain feedback loops of length 3 or more) emerge among
the subgraphs with the minimum 〈µA〉 within their respective
density class. In particular, all motifs found in biological networks
(marked in circles in Fig. 1) have zero contraction loss. Motifs
containing feedback loops with length 3 or more do not have the
minimum contraction loss within their density class—they do not
favour stability—and thesemotifs also requiremore accurate tuning
of their edge-weights to be stable (Supplementary Information 1.4).
Recall also that feedback provides functionalities associated with
performance (such as robustness to external disturbances25), which
do not necessarily favour the stability of the networked system.

To further disentangle the relation between network motifs and
subgraphs with low contraction loss, we compared the Z-score and
relative contraction loss of subgraphs in several real networks. As
introduced in ref. 1, the Z-score of a subgraph A in a real network
quantifies its statistical significance as a motif, and is defined by

Z(A) :=
Nreal(A)−〈Nrand(A)〉

σrand(A)

where Nreal is the number of occurrences of subgraph A in the real
network, 〈Nrand〉 the average number of occurrences in an ensemble
of its randomizations, and σrand its standard deviation. A subgraph
with a high (low) Z-score is over(under)-represented in the real
network. The normalized Z-score of a subgraph is its Z-score
divided by themaximum(in absolute value)Z-score of all subgraphs
with the same number of nodes.

We define the relative contraction loss of a subgraph A as

r(A) :=
〈µA(A)〉−µmin

µmax−µmin

where µmax (or µmin) is the maximum (or minimum) mean
contraction loss among all subgraphs within the density class of A.
The case r(A)= 0 (or r(A)= 1) corresponds to a subgraph with
the minimal (or maximal) mean contraction loss among its density
class. The relative contraction loss is undefined for all subgraphs

with 3 nodes/2 edges or 4 nodes/3 edges (that is, µmin=µmax=0),
as they are acyclic and thus have zero contraction loss (Proposition
2a of Supplementary Information 1.4). Hence, we discard them from
the discussion that follows as subgraphs with zero contraction loss
maintain the stability of the networked system.

We compared the relative contraction loss and the normalized
Z-score of 3- and 4-node subgraphs in several biological networks,
finding that over-represented subgraphs (motifs) tend to have
low relative contraction loss, see Fig. 2. The phenomenon is
stronger for 3-node subgraphs, where under-represented subgraphs
(anti-motifs) have high relative contraction loss. In other words,
subgraphs that favour stability are over-represented, whereas 3-
node subgraphswhich donot favour stability are under-represented.
We did not find this phenomenon in other classes of networks
containing feedbackmotifs with highZ-score (such as the electronic
circuits shown in Supplementary Information 6), suggesting that
other factors apart from maintaining stability play a central role in
their construction.

Next we explore how the small contraction loss property of
motifs can be used to build bigger networked systems. Consider a
set of N modules (that is, connected subgraphs) possibly having
vector dynamics

ẋi= fi(xi, t)+Biui, yi=Cixi (7)

i= 1, . . . , N , where xi ∈ Rni , ui ∈ Rmi and yi ∈ Rpi are the state,
input and output vectors of module i. The matrices Bi ∈ Rni×mi

and Ci∈Rpi×ni determine which nodes of the module interact with
other modules. The interconnection of modules is again described
by equation (3), but the matrix A ∈ R(m1+···+mN )×(p1+···+pN ) is no
longer necessarily square because somemodules may have different
numbers of inputs and outputs.

Each isolated module is assumed contracting with rate αi>0
under measure µi. The contraction rate of a module can be
calculated using the contraction rate of its internal nodes and
their respective interconnection topology Ai. To each module, we
associate a condensed node, with scalar state and linear dynamics,
that inherits the module’s contraction rate

żi=−αizi+ui, yi=zi (8)

In addition, we use the interconnection network of the full system
to define a condensed weighted adjacency matrix Acond ∈ RN×N

as follows:

Acond :=


µ1(M11) ‖M12‖1,2 · · · ‖M1N‖1,N
‖M21‖2,1 µ2(M22) · · · ‖M2N‖2,N

...
. . .

...
‖MN1‖N ,1 ‖MN2‖N ,2 · · · µN (MNN )

 (9)
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Figure 3 | Relative contraction loss of motifs at di�erent scales of interconnection. a, Interconnection of motifs as motifs. The original network is
condensed using (8) and (9) into the condensed network. Contraction of the condensed network ensures contraction of the original network. b, Original
and two consecutive condensations for the yeast transcription network. Network motifs are recursively found and condensed into a single node, see
Supplementary Information 5 for details. c, Number of motifs versus relative contraction loss for the original and condensed networks. The Saint Martin
food-web network is not shown as it does not contain motifs after a single condensation.

whereMij=BiAijCj, andAij∈Rmi×pj is the (i, j) block of the originalA
interconnection network (3), see Supplementary Fig. 1. Above, ‖·‖i,j
stands for the induced matrix norm

‖M‖i,j := sup
|x|i=1
|Mx|j

with |x|i = |P1/2
i x|2 a weighted Euclidean norm with metric Pi ∈

Rni×ni found as the solution to the linear matrix inequality of
Theorem 1 in Supplementary Information 1.When the off-diagonal
elements ofAi are non-negative, a diagonal solution to such amatrix
inequality exists and the metric Pi just assigns different units to
different modules (Supplementary Information 1). Also, in the case
when each module has a single input and a single output,Acond takes
a particular simple form in which its (i, j) entry is |γijAij| if i 6= j and
γijAij if i= j, with γij=Bᵀ

i Cj∈R.
In Theorem 2 of Supplementary Information 1 we prove that if

the condensed networked system (8)–(9) is contracting, then the
original system (7)–(3) is also contracting. This result also holds
when instantaneous contraction rates are used for the modules,
making the condensed dynamics (8) dependent on the states of
the original dynamics (Supplementary Information 1.6). Hence, the
interconnections between modules have minimal contraction loss
if they are also network motifs. This suggests a modular design
principle to build complex systems, starting by building modules
interconnecting nodes as network motifs, and then interconnecting
those modules again as network motifs.

To better illustrate this point, consider the feedback
interconnection of three 3-node motifs shown in Fig. 3a. Each
isolated motif will be contracting if

−αj :=−αj,min+µj(Aj)<0, j=1,2,3

where αj,min is the minimum contraction rate of the nodes inside the
jth motif, and Aj is its internal interconnection. Indeed, αj is just
the contraction rate of motif j. The smaller is the contraction loss

of the internal topology, the larger is the contraction inherited by
the module. As the contraction loss of feedforward motifs is zero, in
this example each condensed node inherits theminimal contraction
rate of its nodes, that is, αj = αj,min. To construct the condensed
interconnection network, we first note that

B1=Cᵀ
2 =

00
1

 , B2=Cᵀ
3 =

10
0

 , B3=Cᵀ
1 =

01
0


The interconnection of the modules is described by the adjacency
matrix of the 3-node feedback interconnection motif A ∈ R3×3,
whose only non-zero values are A12, A23 and A31 (see Fig. 3a).
Then, it is not surprising that the corresponding Acond obtained
using (9) is again the adjacency matrix of a 3-node feedback
interconnection. The condensed interconnected system will be
contracting if αmin=min{α1,α2,α3}>µcond(Acond)=µA(A). In
addition, Theorem 2 of Supplementary Information 1 implies that
under such a condition the original interconnected system is also
contracting. As the constraints were imposed in the contraction
rates only, the details of the node dynamics were not used in
the analysis.

The contraction loss of the interconnection plays an important
role in the stability of the whole network, because modules inherit
a larger contraction rate when their internal interconnection has
a smaller contraction loss. And this applies at different scales of
interconnection: if the system is recursively condensed, the resulting
condensed modules at each step inherit larger contraction rates
when the interconnections between the modules in the previous
step have smaller contraction loss. In this form, the interconnection
of ‘motifs of motifs’ is a recursive and modular network design
procedure in which the contraction loss remains minimal at each
step of construction of the network. Both humans and nature
seem to favour this design principle by recursively interconnecting
already designed modules28,29.
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The idea of ‘motifs of motifs’ was used in ref. 30 to reverse-
engineer electronic circuits and coarse-grain a signal-transduction
protein network. In contrast, here we aim to check if motifs
at different scales still have low relative contraction loss, thus
providing direct evidence of a design principle found in real-
world complex networks. We used a collection of real networks
to test our hypothesis by recursively searching and condensing
motifs (details of the method and used networks are found in
Supplementary Information 5 and 7, respectively). We found that
most motifs in the original and condensed regulatory networks
of Escherichia coli and yeast have low relative contraction loss,
Fig. 3. For the neuron network of Caenorhabditis elegans this only
happens for 3-node motifs. A closer analysis reveals that most
4-node motifs in the C. elegans with high relative contraction loss
also have small Z-score, see Fig. 2. In other words, they are not
strongly over-represented.
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