Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

External high-quality-factor resonator tunes up nuclear magnetic resonance

Abstract

The development of powerful sensors for the detection of weak electromagnetic fields is crucial for many spectroscopic applications, in particular for nuclear magnetic resonance (NMR). Here, we present a comprehensive theoretical model for boosting the NMR signal-to-noise ratio, validated by liquid-state 1H, 129Xe and 6Li NMR experiments at low frequencies, using an external resonator with a high quality-factor combined with a low-quality-factor input coil. In addition to an enhanced signal-to-noise ratio, this approach exhibits striking features such as a high degree of flexibility with respect to input coil parameters and a square-root dependence on the sample volume, and signifies an important step towards compact NMR spectroscopy at low frequencies with small and large coils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up of the EHQE-NMR spectrometer.
Figure 2: Single-scan 1H,6Li and 129Xe EHQE-NMR measurements.
Figure 3: Experimental confirmation of EHQE-NMR theory.
Figure 4: Key properties of the EHQE-NMR method using 1H-NMR of benzene.

Similar content being viewed by others

References

  1. Abragam, A. The Principles of Nuclear Magnetism (Clarendon, 1961).

    Google Scholar 

  2. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1987).

    Google Scholar 

  3. Hoult, D. I. & Richards, R. E. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24, 71–85 (1976).

    ADS  Google Scholar 

  4. Webb, A. G. Radiofrequency microcoils in magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 31, 1–42 (1997).

    Article  Google Scholar 

  5. Sillerud, L. O. et al. 1H NMR detection of superparamagnetic nanoparticles using a microcoil and novel tuning circuit. J. Magn. Reson. 181, 181–190 (2006).

    Article  ADS  Google Scholar 

  6. Coffey, A. M., Truong, M. L. & Chekmenev, E. Y. Low-field MRI can be more sensitive than high-field MRI. J. Magn. Reson. 237, 169–174 (2013).

    Article  ADS  Google Scholar 

  7. Greenberg, Y. S. Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys. 70, 175–222 (1998).

    Article  ADS  Google Scholar 

  8. McDermott, R. et al. Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247–2249 (2002).

    Article  ADS  Google Scholar 

  9. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    Article  ADS  Google Scholar 

  10. Sheng, D., Li, S., Dural, N. & Romalis, M. V. Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110, 160802 (2013).

    Article  ADS  Google Scholar 

  11. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  ADS  Google Scholar 

  12. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  13. Appelt, S., Häsing, F. W., Kühn, H., Perlo, J. & Blümich, B. Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the Earth’s magnetic field. Phys. Rev. Lett. 94, 197602 (2005).

    Article  ADS  Google Scholar 

  14. Theis, T. et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nature Phys. 7, 571–575 (2011).

    Article  ADS  Google Scholar 

  15. Ledbetter, M. P. et al. Near-zero field nuclear magnetic resonance. Phys. Rev. Lett. 107, 107601 (2011).

    Article  ADS  Google Scholar 

  16. Happer, W. Optical pumping. Rev. Mod. Phys. 44, 169–249 (1972).

    Article  ADS  Google Scholar 

  17. Bouchiat, M. A., Carver, R. R. & Varnum, C. M. Nuclear polarisation in He3 gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett. 5, 373–375 (1960).

    Article  ADS  Google Scholar 

  18. Carver, T. R. & Slichter, C. P. Experimental verification of the Overhauser nuclear polarization effect. Phys. Rev. 102, 975–981 (1956).

    Article  ADS  Google Scholar 

  19. Bowers, C. R. & Weitekamp, D. P. Transformation of symmetrization order to nuclear-spin magnetisation by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 57, 2645–2648 (1986).

    Article  ADS  Google Scholar 

  20. Adams, R. W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).

    Article  ADS  Google Scholar 

  21. Perlo, J. et al. High-resolution NMR spectroscopy with a portable single-sided sensor. Science 308, 1279 (2005).

    Article  Google Scholar 

  22. Blümich, B., Casanova, F. & Appelt, S. NMR at low magnetic fields. Chem. Phys. Lett. 477, 231–240 (2009).

    Article  ADS  Google Scholar 

  23. Appelt, S., Kühn, H., Häsing, F. W. & Blümich, B. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth’s magnetic field. Nature Phys. 2, 105–109 (2006).

    Article  ADS  Google Scholar 

  24. Sleator, T., Hahn, E. L., Hilbert, C. & Clarke, J. Nuclear spin noise. Phys. Rev. Lett. 55, 1742–1745 (1985).

    Article  ADS  Google Scholar 

  25. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72, 024413 (2005).

    Article  ADS  Google Scholar 

  26. Sun, N. et al. Small NMR biomolecular sensors. Solid-State Electron. 84, 13–21 (2013).

    Article  ADS  Google Scholar 

  27. Augath, M., Heiler, P., Kirsch, S. & Schad, L. R. In vivo39K, 23Na and 1H MR imaging using a triple resonant RF coil setup. J. Magn. Reson. 200, 134–136 (2009).

    Article  ADS  Google Scholar 

  28. Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

    Article  ADS  Google Scholar 

  29. Wäckerle, G., Appelt, S. & Mehring, M. Two-dimensional optical spectroscopy by periodic excitation of sublevel coherence with sub-Doppler resolution. Phys. Rev. A 43, 242–250 (1991).

    Article  ADS  Google Scholar 

  30. Appelt, S., Waeckerle, G. & Mehring, M. in High Precision Navigation 95 (eds Linkwitz, K. & Hangleiter, U.) 29–36 (Dümmler Verlag, 1995).

    Google Scholar 

  31. Staiber, H-D., Appelt, S., Butscher, R., Wäckerle, G. & Mehring, M. in High Precision Navigation 95 (eds Linkwitz, K. & Hangleiter, U.) 62–69 (Dümmler Verlag, 1995).

    Google Scholar 

  32. Tullney, K. et al. Constraints on spin-dependent short-range interaction between nucleons. Phys. Rev. Lett. 111, 100801 (2013).

    Article  ADS  Google Scholar 

  33. Engelke, F. Virtual photons in magnetic resonance. Concepts Magn. Reson. 36A, 266–339 (2010).

    Article  Google Scholar 

  34. Halbach, K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 169, 1–10 (1980).

    Article  ADS  Google Scholar 

  35. Driehuys, B. et al. High-volume production of laser-polarised 129Xe. Appl. Phys. Lett. 69, 1668–1670 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge excellent technical assistance and financial support from S. van Waasen, R. Eichel and A. Schwaitzer at Forschungszentrum Jülich GmbH, and P. Schleker at RWTH Aachen University for sample preparation and consistency checks. We also wish to thank W. Zia for stimulating discussions, as well as J. Colell, M. Emondts and S. Glöggler for their help with various details in hardware construction. Furthermore, we would like to thank M. J. Blümich and H. Burlet for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.S. designed and built the EHQE-NMR probehead, performed experiments, and evaluated experimental results; A.L. built input coil modules, performed experiments, and analysed experimental results; B.B. provided laboratory and experimental facilities and creative input; S.A. supervised the project, designed the EHQE-NMR set-up, performed experiments, and developed the theory. S.A., M.S., A.L. and B.B. wrote the paper.

Corresponding author

Correspondence to Martin Suefke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suefke, M., Liebisch, A., Blümich, B. et al. External high-quality-factor resonator tunes up nuclear magnetic resonance. Nature Phys 11, 767–771 (2015). https://doi.org/10.1038/nphys3382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing