Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous critical and supercritical phenomena in explosive percolation

Abstract

The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of explosive percolation.
Figure 2: Classes of explosive percolation.
Figure 3: Explosive percolation with stochastic staircases.
Figure 4: Non-self-averaging in explosive percolation.
Figure 5: Multiple giant components and the ‘powder keg’.

Similar content being viewed by others

References

  1. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 1994).

    MATH  Google Scholar 

  2. Sahimi, M. Applications of Percolation Theory (Taylor & Francis, 1994).

    Google Scholar 

  3. Erdős, P. & Rényi, A. On random graphs I. Math. Debrecen 6, 290–297 (1959).

    MathSciNet  MATH  Google Scholar 

  4. Erdős, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).

    MathSciNet  MATH  Google Scholar 

  5. Gilbert, E. N. Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959).

    Article  MATH  Google Scholar 

  6. Ben-Naim, E. & Krapivsky, P. L. Kinetic theory of random graphs: From paths to cycles. Phys. Rev. E 71, 026129 (2005).

    Article  ADS  Google Scholar 

  7. Bollobás, B. Random Graphs 2nd edn (Cambridge Univ. Press, 2001).

    Book  MATH  Google Scholar 

  8. Azar, Y., Broder, A. Z., Karlin, A. R. & Upfal, E. Proc. 26th ACM Symp. Theory Comput. 593–602 (1994).

    Google Scholar 

  9. Azar, Y., Broder, A. Z., Karlin, A. R. & Upfal, E. Balanced allocations. SIAM J. Comput. 29, 180–200 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. Adler, M., Chakarabarti, S., Mitzenmacher, M. & Rasmussen, L. Parallel randomized load balancing. Random Struct. Algorithms 13, 159–188 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. Mitzenmacher, M. The power of two choices in randomized load balancing. Parallel Distrib. Syst. 12, 1094–1104 (2001).

    Article  Google Scholar 

  12. Bohman, T. & Frieze, A. Avoiding a giant component. Random Struct. Algorithms 19, 75–85 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. von Smoluchowski, M. Drei Vorträge uber Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Z. Phys. 17, 557–585 (1916).

    Google Scholar 

  14. Aldous, D. J. Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. Spencer, J. & Wormald, N. Birth control for giants. Combinatorica 27, 587–628 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Newman, M. E. J. & Ziff, R. M. A fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E 64, 016706 (2001).

    Article  ADS  Google Scholar 

  18. Ziff, R. M. Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks. Phys. Rev. Lett. 103, 045701 (2009).

    Article  ADS  Google Scholar 

  19. Cho, Y. S., Kim, J. S., Park, J., Kahng, B. & Kim, D. Percolation transitions in scale-free networks under the Achlioptas process. Phys. Rev. Lett. 103, 135702 (2009).

    Article  ADS  Google Scholar 

  20. Radicchi, F. & Fortunato, S. Explosive percolation in scale-free networks. Phys. Rev. Lett. 103, 168701 (2009).

    Article  ADS  Google Scholar 

  21. Ziff, R. M. Scaling behavior of explosive percolation on the square lattice. Phys. Rev. E 82, 051105 (2010).

    Article  ADS  Google Scholar 

  22. Radicchi, F. & Fortunato, S. Explosive percolation: A numerical analysis. Phys. Rev. E 81, 036110 (2010).

    Article  ADS  Google Scholar 

  23. Friedman, E. J. & Landsberg, A. S. Construction and analysis of random networks with explosive percolation. Phys. Rev. Lett. 103, 255701 (2009).

    Article  ADS  Google Scholar 

  24. D’ Souza, R. M. & Mitzenmacher, M. Local cluster aggregation models of explosive percolation. Phys. Rev. Lett. 104, 195702 (2010).

    Article  ADS  Google Scholar 

  25. Cho, Y. S. & Kahng, B. Suppression effect on explosive percolation. Phys. Rev. Lett. 107, 275703 (2011).

    Article  Google Scholar 

  26. Riordan, O. & Warnke, L. Achlioptas processes are not always self-averaging. Phys. Rev. E 86, 011129 (2012).

    Article  ADS  Google Scholar 

  27. Bastas, N., Giazitzidis, P., Maragakis, M. & Kosmidis, K. Explosive percolation: Unusual transitions of a simple model. Physica A 407, 54–65 (2014).

    Article  ADS  Google Scholar 

  28. Schwarz, J. M., Liu, A. J. & Chayes, L. Q. The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys. Lett. 73, 560–566 (2006).

    Article  ADS  Google Scholar 

  29. Toninelli, C., Biroli, G. & Fisher, D. S. Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96, 035702 (2006).

    Article  ADS  Google Scholar 

  30. Jeng, M. & Schwarz, J. M. Force-balance percolation. Phys. Rev. E 81, 011134 (2010).

    Article  ADS  Google Scholar 

  31. Cao, L. & Schwarz, J. M. Correlated percolation and tricriticality. Phys. Rev. E 86, 061131 (2012).

    Article  ADS  Google Scholar 

  32. Nagler, J., Levina, A. & Timme, M. Impact of single links in competitive percolation. Nature Phys. 7, 265–270 (2011).

    Article  ADS  Google Scholar 

  33. Manna, S. S. & Chatterjee, A. A new route to explosive percolation. Physica A 390, 177–182 (2011).

    Article  ADS  Google Scholar 

  34. da Costa, R. A., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105, 255701 (2010).

    Article  ADS  Google Scholar 

  35. Grassberger, P., Christensen, C., Bizhani, G., Son, S-W. & Paczuski, M. Explosive percolation is continuous, but with unusual finite size behavior. Phys. Rev. Lett. 106, 225701 (2011).

    Article  ADS  Google Scholar 

  36. Lee, H. K., Kim, B. J. & Park, H. Continuity of the explosive percolation transition. Phys. Rev. E 84, 020101 (2011).

    ADS  Google Scholar 

  37. Tian, L. & Shi, D-N. The nature of explosive percolation phase transition. Phys. Lett. A 376, 286–289 (2012).

    Article  ADS  MATH  Google Scholar 

  38. Riordan, O. & Warnke, L. Explosive percolation is continuous. Science 333, 322–324 (2011).

    Article  ADS  Google Scholar 

  39. Hooyberghs, H. & Van Schaeybroeck, B. Criterion for explosive percolation transitions on complex networks. Phys. Rev. E 83, 032101 (2011).

    Article  ADS  Google Scholar 

  40. Riordan, O. & Warnke, L. Achlioptas process phase transitions are continuous. Ann. Appl. Probab. 22, 1450–1464 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagler, J., Tiessen, T. & Gutch, H. W. Continuous percolation with discontinuities. Phys. Rev. X 2, 031009 (2012).

    Google Scholar 

  42. Schröder, M., Ebrahimnazhad Rahbari, S. H. & Nagler, J. Crackling noise in fractional percolation. Nature Commun. 4, 2222 (2013).

    Article  ADS  Google Scholar 

  43. Cho, Y. S., Hwang, S., Herrmann, H. J. & Kahng, B. Avoiding a spanning cluster in percolation models. Science 339, 1185–1187 (2013).

    Article  ADS  Google Scholar 

  44. Rozenfeld, H. D., Gallos, L. K. & Makse, H. A. Explosive percolation in the human protein homology network. Eur. Phys. J. B 75, 305–310 (2010).

    Article  ADS  MATH  Google Scholar 

  45. Chen, W. & D’Souza, R. M. Explosive percolation with multiple giant components. Phys. Rev. Lett. 106, 115701 (2011).

    Article  ADS  Google Scholar 

  46. Araújo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster. Phys. Rev. Lett. 105, 035701 (2010).

    Article  ADS  Google Scholar 

  47. Cho, Y. S. & Kahng, B. Types of discontinuous percolation transitions in cluster merging processes. Sci. Rep. http://dx.doi.org/10.1038/srep11905 (in the press).

  48. Bohman, T., Frieze, A. & Wormald, N. C. Avoidance of a giant component in half the edge set of a random graph. Random Struct. Algorithms 25, 432–449 (2004).

    Article  MathSciNet  Google Scholar 

  49. Chen, W. et al. Phase transitions in supercritical Explosive Percolation. Phys. Rev. E 87, 052130 (2013).

    Article  ADS  Google Scholar 

  50. Chen, W. et al. Unstable supercritical discontinuous percolation transitions. Phys. Rev. E 88, 042152 (2013).

    Article  ADS  Google Scholar 

  51. Chen, W., Zheng, Z. & D’Souza, R. M. Deriving an underlying mechanism for discontinuous percolation. Europhys. Lett. 100, 66006 (2012).

    Article  ADS  Google Scholar 

  52. Panagiotou, K., Spöhel, R., Steger, A. & Thomas, H. Explosive percolation in Erdős-Rényi-like random graph processes. Electron. Notes Discrete Math. 38, 699–704 (2011).

    Article  MATH  Google Scholar 

  53. Boettcher, S., Singh, V. & Ziff, R. M. Ordinary percolation with discontinuous transitions. Nature Commun. 3, 787 (2012).

    Article  ADS  Google Scholar 

  54. Moreira, A. A., Oliveira, E. A., Reis, S. D. S., Herrmann, H. J. & Andrade, J. S. Hamiltonian approach for explosive percolation. Phys. Rev. E 81, 040101(R) (2010).

    Article  ADS  Google Scholar 

  55. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  56. Angst, S., Dahmen, S. R., Hinrichsen, H., Hucht, A. & Magiera, M. P. Explosive ising. J. Stat. Mech. 2012, L06002 (2012).

    Article  Google Scholar 

  57. Gómez-Gardeñes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).

    Article  ADS  Google Scholar 

  58. Guan, S., Zhang, X., Boccaletti, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015).

    Article  ADS  Google Scholar 

  59. Bizhani, G., Paczuski, M. & Grassberger, P. Discontinuous percolation transitions in epidemic processes, surface depinning in random media, and Hamiltonian random graphs. Phys. Rev. E 86, 011128 (2012).

    Article  ADS  Google Scholar 

  60. Krapivsky, P. L., Redner, S. & Ben-Naim, E. A Kinetic View of Statistical Physics (Cambridge Univ. Press, 2010).

    Book  MATH  Google Scholar 

  61. Cho, Y. S., Kahng, B. & Kim, D. Cluster aggregation model for discontinuous percolation transition. Phys. Rev. E 81, 030103(R) (2010).

    Article  ADS  Google Scholar 

  62. Medini, D., Covacci, A. & Donati, C. Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLoS Comput. Biol. 2, e173 (2006).

    Article  ADS  Google Scholar 

  63. Granovetter, M. S. The strength of weak ties. Am. J. Soc. 1360–1380 (1973).

    Article  Google Scholar 

  64. Pan, R. K., Kivelä, M., Saramäki, J., Kaski, K. & Kertész, J. Using explosive percolation in analysis of real-world networks. Phys. Rev. E 83, 046112 (2011).

    Article  ADS  Google Scholar 

  65. Bounova, G. A. Topological Evolution of Networks: Case Studies in the US Airlines and Language Wikipedias PhD thesis, Massachusetts Institute of Technology (2009)

  66. Witten, T. A. Jr & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  Google Scholar 

  67. Cho, Y. S. & Kahng, B. Discontinuous percolation transitions in real physical systems. Phys. Rev. E 84, 050102 (2011).

    Article  ADS  Google Scholar 

  68. Oliveira, C. L. N., Araújo, N. A., Andrade, J. S. & Herrmann, H. J. Explosive electric breakdown due to conducting-particle deposition on an insulating substrate. Phys. Rev. Lett. 113, 155701 (2014).

    Article  ADS  Google Scholar 

  69. Kim, Y., Yun, Y-k. & Yook, S-H. Explosive percolation in a nanotube-based system. Phys. Rev. E 82, 061105 (2010).

    Article  ADS  Google Scholar 

  70. Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J. & Strogatz, S. H. Are randomly grown graphs really random? Phys. Rev. E 64, 041902 (2001).

    Article  ADS  Google Scholar 

  71. Vijayaraghavan, V. S., Noël, P-A., Waagen, A. & D’Souza, R. M. Growth dominates choice in network percolation. Phys. Rev. E 88, 032141 (2013).

    Article  ADS  Google Scholar 

  72. Do Yi, S., Jo, W. S., Kim, B. J. & Son, S-W. Percolation properties of growing networks under an Achlioptas process. Europhys. Lett. 103, 26004 (2013).

    Article  ADS  Google Scholar 

  73. Chen, W., Schröder, M., D’Souza, R. M., Sornette, D. & Nagler, J. Microtransition cascades to percolation. Phys. Rev. Lett. 112, 155701 (2014).

    Article  ADS  Google Scholar 

  74. Sornette, D. Discrete scale invariance and complex dimensions. Phys. Rep. 297, 239–270 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  75. da Costa, R. A., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Solution of the explosive percolation quest: Scaling functions and critical exponents. Phys. Rev. E 90, 022145 (2014).

    Article  ADS  Google Scholar 

  76. Hamilton, K. E. & Pryadko, L. P. Tight lower bound for percolation threshold on an infinite graph. Phys. Rev. Lett. 113, 208701 (2014).

    Article  ADS  Google Scholar 

  77. Karrer, B., Newman, M. E. J. & Zdeborová, L. Percolation on sparse networks. Phys. Rev. Lett. 113, 208702 (2014).

    Article  ADS  Google Scholar 

  78. Radicchi, F. Predicting percolation thresholds in networks. Phys. Rev. E 91, 010801 (2015).

    Article  ADS  Google Scholar 

  79. Squires, S. et al. Weakly explosive percolation in directed networks. Phys. Rev. E 87, 052127 (2013).

    Article  ADS  Google Scholar 

  80. Spencer, J. The giant component: The golden anniversary. Not. AMS 57, 720–724 (2010).

    MathSciNet  MATH  Google Scholar 

  81. Ben-Naim, E. & Krapivsky, P. L. Percolation with multiple giant clusters. J. Phys. A 38, L417 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Riordan, O. & Warnke, L. The evolution of subcritical Achlioptas processes. Random Struct. Algorithms http://dx.doi.org/10.1002/rsa.20530 (2014).

  83. Araújo, N. A. M., Grassberger, P., Kahng, B., Schrenk, K. J. & Ziff, R. M. Recent advances and open challenges in percolation. Eur. Phys. J. Spec. Top. 223, 2307–2321 (2014).

    Article  Google Scholar 

  84. Saberi, A. A. Recent advances in percolation theory and its applications. Phys. Rep. 578, 1–32 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Schröder and A. Witt for valuable discussions and assistance in the preparation of the figures, and C. D’Souza and L. Nagler-Deutsch for invaluable input. R.M.D’S. gratefully acknowledges support from the US Army Research Office MURI Award No. W911NF-13-1-0340 and Cooperative Agreement No. W911NF-09-2-0053 and the Defense Threat Reduction Agency Basic Research Award HDTRA1-10-1-0088.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raissa M. D’Souza or Jan Nagler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, R., Nagler, J. Anomalous critical and supercritical phenomena in explosive percolation. Nature Phys 11, 531–538 (2015). https://doi.org/10.1038/nphys3378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing