Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translation correlations in anisotropically scattering media

Abstract

Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The traditional memory effect.
Figure 2: Correlations within transmission matrices (simulated).
Figure 3: Experimental validation.
Figure 4: Using shift/shift correlations for focusing.
Figure 5: Comparison between shift/shift correlations and adaptive optics microscopy.

Similar content being viewed by others

References

  1. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  2. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  3. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  4. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    Article  ADS  Google Scholar 

  5. Choi, W., Mosk, A. P., Park, Q-H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  6. Hsieh, C-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    Article  ADS  Google Scholar 

  7. Tao, X. et al. Live imaging using adaptive optics with fluorescent protein guide-stars. Opt. Express 20, 15969–15982 (2012).

    Article  ADS  Google Scholar 

  8. Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature Photon. 8, 931–936 (2014).

    Article  ADS  Google Scholar 

  9. Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

    Article  ADS  Google Scholar 

  10. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  11. Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    Article  ADS  Google Scholar 

  12. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon. 7, 300–305 (2013).

    Article  ADS  Google Scholar 

  13. Kong, F. et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 36, 2053–2055 (2011).

    Article  ADS  Google Scholar 

  14. Conkey, D. B. et al. Super-resolution photoacoustic imaging through a scattering wall. Preprint at http://arXiv.org/abs/1310.5736 (2013).

  15. Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photon. 9, 126–132 (2015).

    Article  ADS  Google Scholar 

  16. Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photon. 8, 58–64 (2014).

    Article  ADS  Google Scholar 

  17. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    Article  ADS  Google Scholar 

  18. Feng, S., Kane, C., Lee, P. & Stone, A. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    Article  ADS  Google Scholar 

  19. Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990).

    Article  ADS  Google Scholar 

  20. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    Article  ADS  Google Scholar 

  21. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  22. Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photon. 8, 784–790 (2014).

    Article  ADS  Google Scholar 

  23. Hsieh, C-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    Article  ADS  Google Scholar 

  24. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    Article  ADS  Google Scholar 

  25. Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014).

    Article  ADS  Google Scholar 

  26. Takasaki, K. T. & Fleischer, J. W. Phase-space measurement for depth-resolved memory-effect imaging. Opt. Express 22, 31426–31433 (2014).

    Article  ADS  Google Scholar 

  27. Psaltis, D. & Papadopoulos, I. N. Imaging: The fog clears. Nature 491, 197–198 (2012).

    Article  ADS  Google Scholar 

  28. Li, J. H. & Genack, A. Z. Correlation in laser speckle. Phys. Rev. E 49, 4530–4533 (1994).

    Article  ADS  Google Scholar 

  29. Berkovits, R., Kaveh, M. & Feng, S. Memory effect of waves in disordered systems: A real-space approach. Phys. Rev. B 40, 737–740 (1989).

    Article  ADS  Google Scholar 

  30. Jacques, S. L. Optical properties of biological tissues: A review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  ADS  Google Scholar 

  31. Cheong, W-F., Prahl, S. A. & Welch, A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    Article  ADS  Google Scholar 

  32. Schott, S., Bertolotti, J., Léger, J-F., Bourdieu, L. & Gigan, S. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express 23, 13505–13516 (2015).

    Article  ADS  Google Scholar 

  33. Ji, N., Sato, T. R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl Acad. Sci. USA 109, 22–27 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Freund, R. Chen and M. Jang for discussions and for providing very helpful feedback on this manuscript. This work was supported by the German Research Foundation, DFG (EXC 257 NeuroCure), NIH 1DP2OD007307-01 and the Wellcome Trust (WT092197MA).

Author information

Authors and Affiliations

Authors

Contributions

B.J. and R.H. conceived and developed the idea with essential help from I.M.V. B.J. and I.N.P. performed experiments. B.J., R.H. and I.M.V. wrote the manuscript. R.H. and I.M.V. wrote the mathematical supplement with help from B.J. B.J. and C.Y. supervised the project.

Corresponding author

Correspondence to Benjamin Judkewitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Judkewitz, B., Horstmeyer, R., Vellekoop, I. et al. Translation correlations in anisotropically scattering media. Nature Phys 11, 684–689 (2015). https://doi.org/10.1038/nphys3373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing