Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Abstract

Recent experiments have revealed spectacular transport properties in semimetals, such as the large, non-saturating magnetoresistance exhibited by WTe2 (ref. 1). Topological semimetals with massless relativistic electrons have also been predicted2 as three-dimensional analogues of graphene3. These systems are known as Weyl semimetals, and are predicted to have a range of exotic transport properties and surface states4,5,6,7, distinct from those of topological insulators8,9. Here we examine the magneto-transport properties of NbP, a material the band structure of which has been predicted to combine the hallmarks of a Weyl semimetal10,11 with those of a normal semimetal. We observe an extremely large magnetoresistance of 850,000% at 1.85 K (250% at room temperature) in a magnetic field of up to 9 T, without any signs of saturation, and an ultrahigh carrier mobility of 5 × 106 cm2 V−1 s−1 that accompanied by strong Shubnikov–de Haas (SdH) oscillations. NbP therefore presents a unique example of a material combining topological and conventional electronic phases, with intriguing physical properties resulting from their interplay.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Band structure for different semimetals.
Figure 2: Crystal structure, magnetoresistance and mobility.
Figure 3: High-field magnetoresistance and SdH oscillation.
Figure 4: Bulk band structures of NbP.

References

  1. 1

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

  2. 2

    Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  3. 3

    Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  4. 4

    Turner, A. M. & Vishwanath, A. Beyond band insulators: Topology of semi-metals and interacting phases. Preprint at http://arxiv.org/abs/1301.0330 (2013).

  5. 5

    Hosur, P. & Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

  6. 6

    Vafek, O. & Vishwanath, A. Dirac Fermions in solids: From high-T c cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

  7. 7

    Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

  8. 8

    Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  9. 9

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  10. 10

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  11. 11

    Huang, S-M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Preprint at http://arxiv.org/abs/1501.00755 (2015).

  12. 12

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  13. 13

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

  14. 14

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  15. 15

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

  16. 16

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nature Mater. 14, 280–284 (2014).

  17. 17

    Narayanan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2 . Phys. Rev. Lett. 114, 117201 (2015).

  18. 18

    Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N. & Petroff, F. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

  19. 19

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

  20. 20

    Parkin, S. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).

  21. 21

    Singleton, J. Band Theory and Electronic Properties of Solids (Oxford Univ. Press, 2001).

  22. 22

    Mangez, J. H., Issi, J. P. & Heremans, J. Transport properties of bismuth in quantizing magnetic fields. Phys. Rev. B 14, 4381–4385 (1976).

  23. 23

    Heremans, J. et al. Cyclotron resonance in epitaxial Bi1−xSbx films grown by molecular-beam epitaxy. Phys. Rev. B 48, 11329–11335 (1993).

  24. 24

    Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999).

  25. 25

    Fauqué, B., Vignolle, B., Proust, C., Issi, J-P. & Behnia, K. Electronic instability in bismuth far beyond the quantum limit. New J. Phys. 11, 113012 (2009).

  26. 26

    Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

  27. 27

    Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett. 106, 156808 (2011).

  28. 28

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541–545 (2010).

  29. 29

    Shekhar, C. et al. Ultrahigh mobility and nonsaturating magnetoresistance in Heusler topological insulators. Phys. Rev. B 86, 155314 (2012).

  30. 30

    Yan, B. & de Visser, A. Half-Heusler topological insulators. MRS Bull. 39, 859–866 (2014).

  31. 31

    He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

  32. 32

    Feng, J. et al. Large linear magnetoresistance in Dirac semi-metal Cd3As2 with Fermi surfaces close to the Dirac points. Preprint at http://arxiv.org/abs/1405.6611v1 (2014).

  33. 33

    He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

  34. 34

    Zhang, C. et al. Tantalum monoarsenide: An exotic compensated semimetal. Preprint at http://arxiv.org/abs/1502.00251 (2015).

  35. 35

    Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).

  36. 36

    Abrikosov, A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

  37. 37

    Collaudin, A., Fauqué, B., Fuseya, Y., Kang, W. & Behnia, K. Angle dependence of the orbital magnetoresistance in bismuth. Phys. Rev. X 5, 021022 (2015).

  38. 38

    Martin, J. & Gruehn, R. Zum chemischen Transport von Monophosphiden MP (M = Zr, Hf, Nb, Ta, Mo, W) und Diposphiden MP2 (M = Ti, Zr, Hf). Z. Kristallogr. 182, 180–182 (1988).

  39. 39

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  40. 40

    Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft DFG (Project No.EB 518/1-1 of DFG-SPP 1666 ‘Topological Insulators’) and by the ERC Advanced Grant No. (291472) ‘Idea Heusler’. Y.C. acknowledge support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). We acknowledge the support of the High Magnetic Field Laboratory Dresden (HLD) at HZDR and High Field Magnet Laboratory Nijmegen (HFML-RU/FOM), members of the European Magnetic Field Laboratory (EMFL).

Author information

B.Y. conceived the original idea for the project. C.S. performed the low-field PPMS measurement with the help of M.N. and W.S. C.S., I.L. and U.Z. performed the 30 T static magnetic field measurements. Y.Skourski, A.K.N. and J.W. performed the pulsed high magnetic field experiments. M.S. grew the single-crystal samples. Y.Sun and B.Y. calculated band structures. H.B. and Y.G. characterized the crystal structure. Z.L. and Y.C. contributed to helpful discussions. All authors analysed the results. B.Y., C.S. and A.K.N. wrote the manuscript with substantial contributions from all authors. C.F. supervised the project.

Correspondence to Binghai Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 966 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shekhar, C., Nayak, A., Sun, Y. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys 11, 645–649 (2015). https://doi.org/10.1038/nphys3372

Download citation

Further reading