Abstract
The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory in curved spacetime, such as Hawking radiation, are typically assumed to be relevant only for extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to the decoherence of quantum superpositions. Time dilation induces a universal coupling between the internal degrees of freedom and the centre of mass of a composite particle. The resulting correlations lead to decoherence in the particle position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to affect micrometre-scale objects. Gravity can therefore account for the emergence of classicality and this effect could in principle be tested in future matter-wave experiments.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Non-inertial quantum clock frames lead to non-Hermitian dynamics
Communications Physics Open Access 22 November 2022
-
A way forward for fundamental physics in space
npj Microgravity Open Access 02 November 2022
-
Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale
Nature Communications Open Access 22 July 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Colella, R., Overhauser, A. W. & Werner, S. A. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).
Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991).
Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. Matter-wave interference with particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 15, 14696 (2013).
Giulini, D. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer-Verlag, 1996).
Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).
Caldeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983).
Joos, E. & Zeh, H. D. The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985).
Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A. & Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004).
Prokof’ev, N. V. & Stamp, P. C. E. Theory of the spin bath. Rep. Prog. Phys. 63, 669–726 (2000).
Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).
Anastopoulos, C. Quantum theory of nonrelativistic particles interacting with gravity. Phys. Rev. D 54, 1600–1605 (1996).
Lamine, B., Hervé, R., Lambrecht, A. & Reynaud, S. Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006).
Blencowe, M. P. Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013).
Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).
Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989).
Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).
Einstein, A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 340, 898–908 (1911).
Hafele, J. C. & Keating, R. E. Around-the-world atomic clocks: Predicted relativistic time gains. Science 177, 166–168 (1972).
Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).
Zych, M., Costa, F., Pikovski, I. & Brukner, Č. Quantum interferometric visibility as a witness of general relativistic proper time. Nature Commun. 2, 505 (2011).
Breuer, H-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).
Einstein, A. & Infeld, L. The Evolution of Physics (Simon and Schuster, 1938).
Hogg, T. & Huberman, B. A. Recurrence phenomena in quantum dynamics. Phys. Rev. Lett. 48, 711–714 (1982).
Karolyhazy, F. Gravitation and quantum mechanics of macroscopic objects. Nuovo Cimento 42, 390–402 (1966).
Zych, M., Costa, F., Pikovski, I., Ralph, T. C. & Brukner, Č. General relativistic effects in quantum interference of photons. Class. Quantum Gravity 29, 224010 (2012).
Ralph, T. C., Milburn, G. J. & Downes, T. Gravitationally induced decoherence of optical entanglement. Preprint at http://arxiv.org/abs/quant-ph/0609139 (2006).
Kiesel, N. et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl Acad. Sci. USA 110, 14180–14185 (2013).
Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free Si nanospheres in high vacuum. Nature Commun. 4, 2743 (2013).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
Lamb, J. W. Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
Lämmerzahl, C. A Hamilton operator for quantum optics in gravitational fields. Phys. Lett. A 203, 12–17 (1996).
Kiefer, C. & Singh, T. P. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067–1076 (1991).
Acknowledgements
We thank M. Arndt, M. Aspelmeyer, L. Diosi and M. Vanner for discussions and S. Eibenberger for providing us with the illustration of the TPPF20 molecule. This work was supported by the Austrian Science Fund (FWF) through the doctoral program Complex Quantum Systems (CoQuS), the Vienna Center for Quantum Science and Technology (VCQ), the SFB FoQuS and the Individual Project 24621, by the Foundational Questions Institute (FQXi), the John Templeton Foundation, the Australian Research Council Centre of Excellence for Engineered Quantum Systems (grant number CE110001013), the European Commission through RAQUEL (No. 323970) and the COST Action MP1209.
Author information
Authors and Affiliations
Contributions
I.P., M.Z., F.C. and Č.B. contributed to all aspects of the research, with the leading input from I.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 165 kb)
Rights and permissions
About this article
Cite this article
Pikovski, I., Zych, M., Costa, F. et al. Universal decoherence due to gravitational time dilation. Nature Phys 11, 668–672 (2015). https://doi.org/10.1038/nphys3366
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3366
This article is cited by
-
Non-inertial quantum clock frames lead to non-Hermitian dynamics
Communications Physics (2022)
-
A way forward for fundamental physics in space
npj Microgravity (2022)
-
Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale
Nature Communications (2021)
-
Testing the foundation of quantum physics in space via Interferometric and non-interferometric experiments with mesoscopic nanoparticles
Communications Physics (2021)