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Resolving the vacuum fluctuations of an
optomechanical system using an artificial atom
F. Lecocq*, J. D. Teufel, J. Aumentado and R. W. Simmonds

Heisenberg’s uncertainty principle results in one of the
strangest quantum behaviours: a mechanical oscillator can
never truly be at rest. Even at a temperature of absolute
zero, its position and momentum are still subject to quan-
tum fluctuations1,2. However, direct energy detection of the
oscillator in its ground state makes it seem motionless1,3,
and in linear position measurements detector noise can
masquerade as mechanical fluctuations4–7. Thus, how can
we resolve quantum fluctuations? Here, we parametrically
couple a micromechanical oscillator to a microwave cavity
to prepare the system in its quantum ground state8,9 and
then amplify the remaining vacuum fluctuations into real
energy quanta10. We monitor the photon/phonon-number
distributions using a superconducting qubit11–13, allowing us to
resolve the quantum vacuum fluctuations of the macroscopic
oscillator’s motion. Our results further demonstrate the
ability to control a long-lived mechanical oscillator using
a non-Gaussian resource, directly enabling applications in
quantum information processing and enhanced detection of
displacement and forces.

Cavity optomechanical systems have emerged as an ideal
testbed for exploring the quantum limits of linear measurement of
macroscopic motion2, as well as a promising new architecture for
performing quantum computations. In such systems, a light field
reflecting off a mechanical oscillator acquires a position-dependent
phase shift and reciprocally, it applies a force onto the mechanical
oscillator. This effect is enhanced by embedding the oscillator inside
a high-quality-factor electromagnetic cavity. Numerous physical
implementations exist, both in the microwave and optical domains,
and have been used to push the manipulation of macroscopic
oscillators into the quantum regime, demonstrating laser cooling
to the ground state of motion8,14, coherent transfer of itinerant
light fields into mechanical motion9,15, or their entanglement10.
Thus far, linear position measurements have provided evidence
for the quantization of light fields through radiation pressure shot
noise16,17 and mechanical vacuum fluctuations through motional
sideband asymmetries4–7. However, the use of only classical and
linear tools has restricted most optomechanical experiments to the
manipulation of Gaussian states.

The addition of a strong nonlinearity, such as an atom, has
fostered tremendous progress towards exquisite control over non-
Gaussian quantum states of light fields and atomic motion11,12.
First developed in the context of cavity quantum electrodynamics
(cQED), these techniques are now widely applied to engineered
systems, such as superconducting quantum bits (qubits) and
microwave resonant circuits13,18–21. In a pioneering cQED-type
experiment, a qubit resonantly coupled to a high-frequency
mechanical oscillator3 allowed for the control of a single-phonon
Fock state. However, short energy lifetimes of the mechanical
oscillator and the qubit have slowed any further progress.

Here, we go beyond just cQED by introducing cavity
optomechanical interactions. Our unique architecture incorporates
an artificial atom—a superconducting qubit22—into a circuit cavity
electromechanical system23, on a single chip. Here, a low-frequency,
high-quality-factor mechanical oscillator strongly interacts with
the microwave cavity photons. The qubit–cavity interaction
realizes a non-classical emitter and detector of photons, thus
providing an essential nonlinear resource for the deterministic
control of long-lived mechanical quantum states. We demonstrate
the potential of such an architecture by measuring the quantum
vacuum fluctuations inherently present in the motion of a
macroscopic oscillator.

A microwave cavity is the central element of this architecture
(in blue in Fig. 1a). It is a linear inductor–capacitor (LC) res-
onator formed by a coil inductor and a mechanically compliant
vacuum-gap capacitor23,24. First, the intra-cavity electromagnetic
field is coupled by means of radiation pressure to the vibrational
mode of the compliant capacitor (in red in Fig. 1). Second, the
microwave cavity is capacitively coupled to a phase qubit (in green
in Fig. 1). A phase qubit is formed from a Josephson junction
in parallel with an LC oscillator, and it behaves like a nonlin-
ear resonator at the single-quantum level, that is, an artificial
atom22. To a good approximation the phase qubit can be oper-
ated as a two-level system whose transition frequency ωqb can
be widely tuned in situ by applying an external flux, such that
9GHz≤ωqb/2π≤13.5GHz. The microwave cavity and the funda-
mental flexural mode of the capacitor are two harmonic oscillators
with resonance frequencies of respectively ωc/2π=10.188GHz and
Ωm/2π=15.9MHz.

The qubit and the cavity are both electrical circuits with
quantized energy levels, sharing a voltage through the coupling
capacitor. On resonance,∆qb=ωqb−ωc=0, the interaction between
the qubit and the cavity is well described by the Jaynes–Cummings
Hamiltonian Hjc = h̄J (âσ̂+ + â†σ̂−). Here, σ̂+ (σ̂−) is the raising
(lowering) operator for the qubit, â† (â) is the creation (annihilation)
operator for cavity photons and J is the capacitive coupling strength.
Hjc describes the exchange of a single quantum between the qubit
and the cavity at a rate 2J . In the strong-coupling regime, when the
coupling strength J overcomes the decoherence rates of the qubit γqb
and the cavity κ , that is, J>(γqb,κ), the systemhybridizes, leading to
the well-known vacuum Rabi splitting, measured spectroscopically
in Fig. 1e. The qubit–cavity interaction can be effectively turned off
by detuning the qubit.

The position of the mechanical oscillator modulates the cavity
resonance frequency and thus, the energy stored in the cavity. As
a result, the microwave photons apply a force on the mechanical
oscillator. This interaction is described by the radiation pressure
Hamiltonian2 Hrp= h̄Gn̂cx̂ , whereG=dωc/dx , n̂c= â†â is the cavity
photon number and x̂=xzpf(b̂†

+ b̂) is the oscillator’s position. Here,
xzpf is the oscillator’s zero-point fluctuation and b̂† (b̂) is the creation
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Figure 1 | Device description and strong-coupling regime. a, False-colour optical micrograph of the device. Aluminium is in grey and sapphire in light blue.
The phase qubit is in green; the microwave cavity in blue; and the mechanically compliant capacitor in red. b,c, False-colour scanning electron micrograph
of the qubit’s Josephson junction and of the mechanical oscillator, respectively. d, Equivalent circuit diagram. e, Qubit–cavity vacuum Rabi splitting.
Population of the qubit’s excited state Pe, in green, as a function of the drive frequency and of the qubit detuning with respect to the microwave cavity. The
avoided crossing is a clear signature of the single-photon strong-coupling regime. From a fit with theory we extract the qubit/cavity coupling rate
J/2π= 12.5MHz. f, Cavity–oscillator normal-mode splitting. Reflected power in blue as a function of the drive and pump frequencies. The drive is applied
near the cavity resonance and the pump is applied near∆p=−Ωm. Here, the pump strength is set to np≈5× 105. The normal-mode splitting observed in
the cavity-driven response corresponds to the hybridization of the cavity and mechanical modes in the driven strong-coupling regime. From a fit with
theory we extract κ/2π= 163 kHz, Γm/2π= 150Hz and g=2π×242kHz>( n̄mΓm,κ), where n̄m≈32 at T≈25mK.

(annihilation) operator for mechanical phonons. The force applied
by a single photon onto the mechanical oscillator is typically weak,
with g0=Gxzpf� (n̄mΓm, κ), where n̄m is the equilibrium thermal
occupancy of the oscillator and Γm is its intrinsic relaxation rate.
However, the total force increases significantly with the intensity
of the intra-cavity field. In the presence of a strong coherent
microwave pump of frequency ωp, the optomechanical interaction
is linearized and takes two different forms depending on the
pump–cavity detuning∆p=ωp−ωc (Supplementary Information).
When ∆p =−Ωm, the annihilation of a mechanical phonon can
up-convert a pump photon into a cavity photon, mediating a
‘beamsplitter’ interaction, H−= h̄g (âb̂†

+ b̂â†). This results in the
coherent exchange of the cavity and mechanical states at a rate 2g ,
where g=g0

√np is the enhanced optomechanical coupling and np
is the pump strength expressed in terms of the average number of
intra-cavity photons. When ∆p=+Ωm, pump photons are down-
converted into correlated photon–phonon pairs, mediating a ‘two-
mode squeezer’ interaction, H+= h̄g (â†b̂†

+ b̂â). This results in
the amplification and entanglement of the cavity field and the
mechanical motion10, at a rate 2g . The hallmark for entering
the strong-coupling regime in our device, g>(Γm,κ), is the
hybridization and normal-mode splitting induced by a strong
beamsplitter interaction23, as measured through the cavity-driven
response in Fig. 1f. Finally, with a lifetime of the mechanical
oscillator’s ground state, 1/n̄mΓm ≈ 33 µs, much longer than

the cavity lifetime, 1/κ ≈ 1 µs, this device is in the quantum-
coherent regime15.

Measurements in the frequency domain provide an extensive
characterization of the device’s parameters; however, they probe
only the steady state of the system, in equilibrium with the
thermal environment. In the next two paragraphs, we will show
that time-domain protocols enable: the preparation of non-classical
cavity states and the measurement of the intra-cavity photon-
number distribution11–13; and coherent state transfer by frequency
conversion and entanglement by parametric amplification between
the microwave cavity and the mechanical oscillator25,26.

The out-of-equilibrium dynamics between the phase qubit and
the cavity are shown in Fig. 2. First, in Fig. 2a,b we perform the
first basic block of the Law–Eberly protocol27. We initialize the
qubit in the excited state using a resonant microwave pulse, then
tune the qubit into resonance with the cavity for an interaction
time τ and measure the qubit population Pe (using a destructive
single-shot readout). The coupled system undergoes vacuum Rabi
oscillations at a single frequency J/π and after half a cycle the cavity
is prepared in a single-photon Fock state. Next, in Fig. 2c–f, we
exploit the well-known scaling of the Rabi frequency with the cavity
Fock state number to measure the intra-cavity photon-number
distribution13. We initialize the cavity in either a coherent state or a
thermal state, parametrized by the average photon occupancy 〈â†â〉.
When the qubit is tuned into resonance, each initial distribution
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Figure 2 | Cavity state preparation and readout. a, Sequence diagram for
the preparation of a single-photon Fock state in the cavity. The qubit is
prepared in the first excited state |e〉, with a 75% e�ciency, and then
interacts resonantly with the cavity for a time τ before the qubit state is
measured. b, The population of the qubit Pe plotted as a function of the
interaction time τ . The black line is a fit to a master equation prediction
(Supplementary Information). c, Sequence diagram for the readout of the
cavity state. The cavity is prepared in a coherent (or thermal) state by
driving it with a coherent tone (or with white noise). d, The corresponding
intra-cavity photon distributions for four drive amplitudes, parametrized by
the average cavity occupancy n̄c. The distributions for thermal and
coherent states are respectively in bright and dark blue. e,f, For each drive
amplitude, the evolution of the qubit population Pe is plotted in green for
the coherent states (e), and for the thermal states (f). The solid lines are a
fit to a master equation prediction.

(Fig. 2d) produces a distinct time evolution of Pe(τ ) (Fig. 2e,f),
in good agreement with simulations that include all sources of
decoherence and where the average photon number n̄c is the only
free parameter (Supplementary Information). We resolve the cavity
occupancy down to 〈â†â〉≈0.02 and have the ability to distinguish

0
10−2

10−1

100

101

102

10−2

10−1

100

101

102

0π π 2π6π4π2π
Interaction phase,  (rad)θ

 = πθ

Interaction phase,  (rad)θ

O
cc

up
an

cy
 (q

ua
nt

a)

Qubit
sensor

Microwave
cavity

Mechanical
oscillator

Parametric
interaction

Sensor s
aturatio

n

Exp. Exp.

cb

a

Beamsplitter Two-mode squeezer

d

10−15 10−14

100

101

10−1

10−1

100

+1 quantum
,
,Beamsplitter

Two-mode squeezer

xzpf

〈â  â〉i ≈ 0

〈â  â〉− 〈â  â〉+

〈â
  â

〉 ±/
G

± 
 (p

ho
no

ns
)

cω
cωpω mΩ=       ±

mΩ

p = − mΩΔ

p = − mΩΔ

ΩΔp = + m

ΩΔp = + m

〈â  â〉± = nc + |αc|2± ±

 = ∫2g(t) dtθ

nm
i

| m|2  (phonons)iα

Initial mechanical displacement,          (m)| m|iα

 = nm + | m|2αi i〈b  b〉i 〈b  b〉±

〈b  b〉− 〈b  b〉+

Figure 3 | Optomechanics with a number-resolving detector. a, Sequence
diagram. b, Measured cavity occupancy (blue circles) as a function of the
interaction duration in reduced unit θ , for∆p=−Ωm (np=3.8× 105 and
g=2π× 198 kHz). c, The same as in b for∆p=+Ωm. In both b and c the
predictions of the Heisenberg–Langevin equations of motion are shown in
solid blue lines (Supplementary Information). The mechanical occupancy is
shown as solid red lines. d, Measurement of the vacuum fluctuations of the
mechanical oscillator. The cavity occupancy is measured as a function of
the initial mechanical displacement for θ=π and for∆p=±Ωm. The gain
at each pump frequency, G±, is the ratio of final cavity displacement to
initial mechanical displacement G±=|α±c |2/|αim|2, which is constant for all
αim. We show 〈â†â〉−/G− in red and 〈â†â〉+/G+ in blue. The amplification of
the mechanical vacuum fluctuations appears as one additional quantum
when∆p=+Ωm. The error bars are the measurement uncertainty of the
photon-number distribution (Supplementary Information).

the thermal, noise-like component of the cavity state from the
coherent component.

We will now exploit this measurement technique to explore the
out-of-equilibrium optomechanical dynamics (Fig. 3). To acquire
some physical intuition one can solve the lossless equations of
motion describing the time evolution of the microwave and
mechanical field amplitudes (Supplementary Information). The
average photon occupancy after a beamsplitter interaction, 〈â†â〉−,
or a two-mode squeezer interaction, 〈â†â〉+, follows:

〈â†â〉−=〈â†â〉i cos2(θ/2) +〈b̂†b̂〉i sin2(θ/2) (1)

〈â†â〉+=〈â†â〉i cosh2(θ/2)+〈b̂b̂†
〉i sinh2(θ/2) (2)

where 〈â†â〉i and 〈b̂†b̂〉i are respectively the initial cavity and
mechanical occupancy, and θ =

∫
2g (t) dt is the accumulated
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interaction phase. The periodic functions in equation (1) describe
the state exchange induced by the beamsplitter interaction (see
Fig. 3b) and the hyperbolic functions in equation (2) describe
the amplification induced by the two-mode squeezer interaction
(see Fig. 3c). Experimentally, we start by actively preparing the
mechanical state in a nearly pure coherent state, 〈b̂†b̂〉i= n̄i

m+|α
i
m|

2,
where |αi

m|
2
= 23 is the coherent component (displacement) and

n̄i
m = 0.25 represents the residual thermal (incoherent) phonon

occupancy (Supplementary Information). We then pulse either
optomechanical interaction using a microwave pump at∆p=±Ωm,
followed by tuning the qubit into resonance with the cavity to
measure the subsequent photon-number distribution (as described
previously in Fig. 2) for each pump duration. As expected this
distribution corresponds to a displaced thermal state, characterized
by an incoherent component n̄±c and a coherent component α±c , for a
total average photon occupancy of 〈â†â〉±= n̄±c +|α±c |2. In Fig. 3b,c,
we show 〈â†â〉± as a function of the interaction phase θ . The data in
Fig. 3b (Fig. 3c) qualitatively agree with equation (1) (equation (2)),
and quantitatively agree with full numerical simulations (solid blue
lines) that include the finite linewidth and bath temperature of
each mode (Supplementary Information). The expected evolution
of 〈b̂†b̂〉± follows the solid red line. The only free parameter is the
initial mechanical occupancy 〈b̂†b̂〉i. We emphasize our ability to
resolve, with a sensitivity well below the single-quantum level, the
coherent exchange of mechanical phonons and cavity photons or
the amplification of the two localized modes, with both processes
occurring at a rate faster than decoherence.

A striking signature of the quantum nature of the oscillator’s
motion resides in the commutation relation b̂b̂†

= b̂†b̂ + 1.
Together with equation (2), we can see that even with both
modes initially in their ground state, 〈â†â〉i = 〈b̂†b̂〉i = 0, the
zero-point motion of the oscillator alone feeds the parametric
amplification process, with a gain sinh2(θ/2), leading to a finite
cavity occupancy 〈â†â〉+. In contrast, from the same initial
conditions, equation (1) shows no interesting dynamics for the
beamsplitter interaction, with 〈â†â〉− = 0. Thus, to quantitatively
extract the ‘+1’ contribution during amplification, we compare
the two processes, as shown in Fig. 3d. With the cavity initially in
its ground state, 〈â†â〉i=0, equation (1) and equation (2) relate
the final average cavity occupancy 〈â†â〉± to the initial average
mechanical occupancy 〈b̂†b̂〉i through the gain of the parametric
interactions, sin2(θ/2) for the beamsplitter or sinh2(θ/2) for the
two-mode squeezer. First, we set the interaction phase to θ = π
and measure the final photon distribution as a function of the
initial mechanical displacement αi

m, for ∆p=+Ωm and ∆p=−Ωm.
In the presence of loss, both gains are less than their maximum
values, G−< sin2(π/2) and G+< sinh2(π/2). By taking the ratio
of final cavity displacement to initial mechanical displacement,
G±=|α±c |2/|αi

m|
2, we measure G− = 0.25 and G+=0.88, at all

coherent drive amplitudes (Supplementary Information). We show
the results for 〈â†â〉−/G−=〈b̂†b̂〉i in red and 〈â†â〉+/G+=〈b̂†b̂〉i+1
in blue. The difference between these two optomechanical
interactions is clear in Fig. 3d, showing the extra ‘+1’ contribution
sourced directly from the commutator between the position and
momentum of the macroscopic mechanical oscillator due to the
quantum vacuum fluctuations.

This signature has been discussed in terms of asymmetry
between the rates of phonon absorption and emission5,7, or in
terms of added noise in the context of three-wave mixing1,28. Our
architecture is however uniquely suited to explore quantitatively
this phenomenon in optomechanics, because we have the ability
to measure directly the mechanically scattered photons, localized
in the cavity. By combining the measurement of the intra-cavity
photon-number distribution with the optomechanical interactions,
we have realized a phonon-number distribution measurement. The
nonlinearity of the qubit–cavity interaction allows us to clearly

distinguish classical noise from quantum noise, as only classical
noise can lead to real cavity quanta that can excite the qubit out
of its ground state. In addition, our technique is not sensitive to
the correlations between the electromagnetic noise and mechanical
noise, which would induce ‘squashing’ of the output field7.

Looking forward, with more complex protocols, we could:
exploit the qubit as a deterministic single-phonon source to
generate arbitrary quantum states of motion20; perform full-state
tomography of the mechanical oscillator29. The ability to encode
complex quantum states in these long-lived mechanical systems has
important implications for quantum information and for the study
of the fundamental quantum behaviour of massive objects30.
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