Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Reconfigurable magnonics heats up

Coupling electromagnetic waves to mechanical waves has led to a remarkable miniaturization of wireless communication technologies. Now, spin waves could provide us with technologies that are small and reprogrammable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heated magnonic crystal.
Figure 2: Illustrations of static, dynamic and reconfigurable 1D magnonic crystals.

References

  1. Marconi, G. Wireless Telegraphic Communication (Nobel Lecture, 1909); http://go.nature.com/hynhde

    Google Scholar 

  2. Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Future Generation Comput. Systems 29, 1645–1660 (2013).

    Article  Google Scholar 

  3. Zheludev, N. I. & Kivshar, Y. S. Nature Mater. 11, 917–924 (2012).

    Article  ADS  Google Scholar 

  4. Elachi, C. Proc. IEEE 64, 1666–1698 (1976).

    Article  ADS  Google Scholar 

  5. Braun, K. F. Electrical Oscillations and Wireless Telegraphy (Nobel Lecture, 1909); http://go.nature.com/gWgNG8

    Google Scholar 

  6. Wang, Z. K. et al. ACS Nano 4, 643–648 (2010).

    Article  ADS  Google Scholar 

  7. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. Phys. Rep. 507, 107–136 (2011).

    Article  ADS  Google Scholar 

  8. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  9. Krawczyk, M. & Grundler, D. J. Phys. Condens. Matter 26, 123202 (2014).

    Article  Google Scholar 

  10. Vogel, M. et al. Nature Phys. 11, 487–491 (2015).

    Article  ADS  Google Scholar 

  11. Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC, 1996).

    Google Scholar 

  12. Gulyaev, Y. et al. JETP Lett. 77, 567–570 (2003).

    Article  ADS  Google Scholar 

  13. Kruglyak, V. & Hicken, R. J. Magn. Magn. Mater. 306, 191–194 (2006).

    Article  ADS  Google Scholar 

  14. Chumak, A. V. et al. Nature Commun. 1, 141 (2010).

    Article  ADS  Google Scholar 

  15. Gubbiotti, G. et al. J. Phys. D. 43, 264003 (2010).

    Article  ADS  Google Scholar 

  16. Shibata, J. & Otani, Y. Phys. Rev. B 70, 012404 (2004).

    Article  ADS  Google Scholar 

  17. Topp, J., Heitmann, D., Kostylev, M. P. & Grundler, D. Phys. Rev. Lett. 104, 207205 (2010).

    Article  ADS  Google Scholar 

  18. Tacchi, S. et al. Phys. Rev. B 82, 184408 (2010).

    Article  ADS  Google Scholar 

  19. Verba, R. et al. Appl. Phys. Lett. 103, 082407 (2013).

    Article  ADS  Google Scholar 

  20. Kryshtal, R. G. & Medved, A. V. Appl. Phys. Lett. 100, 192410 (2012).

    Article  ADS  Google Scholar 

  21. Khitun, A., Bao, M. & Wang, K. L. J. Phys. D 43, 264005 (2010).

    Article  ADS  Google Scholar 

  22. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Appl. Phys. Lett. 87, 153501 (2005).

    Article  ADS  Google Scholar 

  23. Nikitin, A. A. et al. Appl. Phys. Lett. 106, 102405 (2015).

    Article  ADS  Google Scholar 

  24. Kirilyuk, A., Kimel, A. V. & Rasing, T. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  25. Lenk, B., Garbs, F., Ulrichs, H., Abeling, N. & Münzenberg, M. in Magnonics 71–81 (Springer, 2013).

    Book  Google Scholar 

  26. Stamps, R. L. et al. J. Phys. D 47, 333001 (2014).

    Article  ADS  Google Scholar 

  27. Chumak, A. V., Serga, A. A. & Hillebrands, B. Nature Commun. 5, 4700 (2014).

    Article  ADS  Google Scholar 

  28. Heyderman, L. J. & Stamps, R. L. J. Phys. Cond. Matter 25, 363201 (2013).

    Article  Google Scholar 

  29. Spinelli, A., Bryant, B., Delgado, F., Fernandez-Rossier, J. & Otte, A. F. Nature Mater. 13, 782–785 (2014).

    Article  ADS  Google Scholar 

  30. Mühlbauer, S. et al. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  31. Tokunaga, Y. et al. http://arxiv.org/abs/1503.05651 (2015).

  32. Fert, A., Cros, V. & Sampaio, J. Nature Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful for support from the German Excellence Cluster 'Nanosystems Initiative Munich (NIM)', the Transregional Collaborative Research Centre TRR80 'From electronic correlations to functionality' of Deutsche Forschungsgemeinschaft, and C. Hohmann at NIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Grundler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundler, D. Reconfigurable magnonics heats up. Nature Phys 11, 438–441 (2015). https://doi.org/10.1038/nphys3349

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing