Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnon spintronics

Subjects

Abstract

Magnon spintronics is the field of spintronics concerned with structures, devices and circuits that use spin currents carried by magnons. Magnons are the quanta of spin waves: the dynamic eigen-excitations of a magnetically ordered body. Analogous to electric currents, magnon-based currents can be used to carry, transport and process information. The use of magnons allows the implementation of novel wave-based computing technologies free from the drawbacks inherent to modern electronics, such as dissipation of energy due to Ohmic losses. Logic circuits based on wave interference and nonlinear wave interaction can be designed with much smaller footprints compared with conventional electron-based logic circuits. In this review, after an introduction into the basic properties of magnons and their handling, we discuss the inter-conversion between magnon currents and electron-carried spin and charge currents; and concepts and experimental studies of magnon-based computing circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The concept of magnon spintronics.
Figure 2: Magnon excitation by spin-transfer torque.
Figure 3: Conversion of magnons into charge currents.
Figure 4: Magnon-based processing of binary data.

References

  1. 1

    Bloch, F. Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930).

    Article  ADS  MATH  Google Scholar 

  2. 2

    Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1996).

    Google Scholar 

  3. 3

    Stancil, D. D. & Prabhakar, A. Spin Waves: Theory and Applications (Springer, 2009).

    MATH  Google Scholar 

  4. 4

    L’vov, V. S. Wave Turbulence Under Parametric Excitation (Springer, 1994).

    Book  MATH  Google Scholar 

  5. 5

    Owens, J. M., Collins, J. H. & Carter, R. L. System applications of magnetostatic wave devices. Circuits Syst. Signal Process. 4, 317–334 (1985).

    Article  ADS  Google Scholar 

  6. 6

    Adam, J. D. Analog signal processing with microwave magnetics. Proc. IEEE 76, 159–170 (1988).

    Article  ADS  Google Scholar 

  7. 7

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

    Article  ADS  Google Scholar 

  8. 8

    Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

    Article  ADS  Google Scholar 

  9. 9

    Feitelson, D. C. Optical Computing: A Survey for Computer Scientists (MIT Press, 1992).

    Google Scholar 

  10. 10

    Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  ADS  Google Scholar 

  11. 11

    Lee, K-S. & Kim, S-K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article  ADS  Google Scholar 

  12. 12

    Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  ADS  Google Scholar 

  13. 13

    Sato, N., Sekiguchi, K. & Nozaki, Y. Electrical demonstration of spin-wave logic operation. Appl. Phys. Express 6, 063001 (2013).

    Article  ADS  Google Scholar 

  14. 14

    Csaba, G., Papp, A. & Porod, W. Spin-wave based realization of optical computing primitives. J. Appl. Phys. 115, 17C741 (2014).

    Article  Google Scholar 

  15. 15

    Khasanvis, S., Rahman, M., Rajapandian, S. N. & Moritz, C. A. IEEE/ACM Int. Symp. Nanoscale Archit. (NANOARCH) 171–176 (IEEE, 2014).

    Google Scholar 

  16. 16

    Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011).

    Article  ADS  Google Scholar 

  17. 17

    Klingler, S. et al. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett. 105, 152410 (2014).

    Article  ADS  Google Scholar 

  18. 18

    Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  ADS  Google Scholar 

  19. 19

    Cuykendall, R. & Andersen, D. R. Reversible optical computing circuits. Opt. Lett. 12, 542–544 (1987).

    Article  ADS  Google Scholar 

  20. 20

    Khitun, A. Multi-frequency magnonic logic circuits for parallel data processing. J. Appl. Phys. 111, 054307 (2012).

    Article  ADS  Google Scholar 

  21. 21

    Cherepanov, V., Kolokolov, I. & L’vov, V. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. 229, 81–144 (1993).

    Article  ADS  Google Scholar 

  22. 22

    Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Article  ADS  Google Scholar 

  23. 23

    Balashov, T., Buczek, P., Sandratskii, L., Ernst, A. & Wulfhekel, W. Magnon dispersion in thin magnetic films. J. Phys. Condens. Matter 26, 394007 (2014).

    Article  Google Scholar 

  24. 24

    Chuang, T-H. et al. Magnetic properties and magnon excitations in Fe(001) films grown on Ir(001). Phys. Rev. B 89, 174404 (2014).

    Article  ADS  Google Scholar 

  25. 25

    Pirro, P. et al. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers. Appl. Phys. Lett. 104, 012402 (2014).

    Article  ADS  Google Scholar 

  26. 26

    Hahn, C. et al. Measurement of the intrinsic damping constant in individual nanodisks of Y3Fe5O12 and Y3Fe5O12—Pt. Appl. Phys. Lett. 104, 152410 (2014).

    Article  ADS  Google Scholar 

  27. 27

    Au, Y. et al. Resonant microwave-to-spin-wave transducer. Appl. Phys. Lett. 100, 182404 (2012).

    Article  ADS  Google Scholar 

  28. 28

    Verba, R. et al. Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars. Appl. Phys. Lett. 103, 082407 (2013).

    Article  ADS  Google Scholar 

  29. 29

    Jamali, M., Kwon, J. H., Seo, S. M., Lee, K. J. & Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 3, 3160 (2013).

    Article  Google Scholar 

  30. 30

    Schneider, T., Serga, A. A., Neumann, T., Hillebrands, B. & Kostylev, M. P. Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B 77, 214411 (2008).

    Article  ADS  Google Scholar 

  31. 31

    Demidov, V. E. et al. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett. 95, 112509 (2009).

    Article  ADS  Google Scholar 

  32. 32

    Demidov, V. E. et al. Excitation of short-wavelength spin waves in magnonic waveguides. Appl. Phys. Lett. 99, 082507 (2011).

    Article  ADS  Google Scholar 

  33. 33

    Schneider, T. et al. Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys. Rev. Lett. 104, 197203 (2010).

    Article  ADS  Google Scholar 

  34. 34

    Gieniusz, R. et al. Single antidot as a passive way to create caustic spin-wave beams in yttrium iron garnet films. Appl. Phys. Lett. 102, 102409 (2013).

    Article  ADS  Google Scholar 

  35. 35

    Kalinikos, B. A., Kovshikov, N. G. & Slavin, A. N. Experimental observation of magnetostatic wave envelope solitons in yttrium iron garnet films. Phys. Rev. B 42, 8658–8660 (1990).

    Article  ADS  Google Scholar 

  36. 36

    Serga, A. A. et al. Parametric generation of forward and phase-conjugated spin-wave bullets in magnetic films. Phys. Rev. Lett. 94, 167202 (2005).

    Article  ADS  Google Scholar 

  37. 37

    Chumak, A. V. et al. Storage-recovery phenomenon in magnonic crystal. Phys. Rev. Lett. 108, 257207 (2012).

    Article  ADS  Google Scholar 

  38. 38

    Melkov, G. A., Serga, A. A., Tiberkevich, V. S., Oliynyk, A. N. & Slavin, A. N. Wave front reversal of a dipolar spin wave pulse in a nonstationary three-wave parametric interaction. Phys. Rev. Lett. 84, 3438–3441 (2000).

    Article  ADS  Google Scholar 

  39. 39

    Ustinov, A. B., Drozdovskii, A. V. & Kalinikos, B. A. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 96, 142513 (2010).

    Article  ADS  Google Scholar 

  40. 40

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  Google Scholar 

  41. 41

    Serga, A. A. et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nature Commun. 5, 3452 (2014).

    Article  ADS  Google Scholar 

  42. 42

    Takei, S. & Tserkovnyak, Y. Superfluid spin transport through easy-plane ferromagnetic insulators. Phys. Rev. Lett. 112, 227201 (2014).

    Article  ADS  Google Scholar 

  43. 43

    Troncosoa, R. E. & Núñez, A. S. Josephson effects in a Bose–Einstein condensate of magnons. Ann. Phys. 346, 182–194 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  44. 44

    Nakata, K., van Hoogdalem, K. A., Simon, P. & Loss, D. Josephson and persistent spin currents in Bose–Einstein condensates of magnons. Phys. Rev. B 90, 144419 (2014).

    Article  ADS  Google Scholar 

  45. 45

    Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  46. 46

    Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  ADS  Google Scholar 

  47. 47

    Stamps, R. L. et al. The 2014 Magnetism Roadmap. J. Phys. D 47, 333001 (2014).

    Article  ADS  Google Scholar 

  48. 48

    Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin-wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986).

    Article  ADS  Google Scholar 

  49. 49

    Kubota, T. et al. Half-metallicity and Gilbert damping constant in Co2FexMn1−xSi Heusler alloys depending on the film composition. Appl. Phys. Lett. 94, 122504 (2009).

    Article  ADS  Google Scholar 

  50. 50

    Sebastian, T. et al. Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide. Appl. Phys. Lett. 100, 112402 (2012).

    Article  ADS  Google Scholar 

  51. 51

    Ulrichs, H., Lenk, B. & Münzenberg, M. Magnonic spin-wave modes in CoFeB antidot lattices. Appl. Phys. Lett. 97, 092506 (2010).

    Article  ADS  Google Scholar 

  52. 52

    Conca, A. et al. Annealing influence on the Gilbert damping parameter and the exchange constant of CoFeB thin films. Appl. Phys. Lett. 104, 182407 (2014).

    Article  ADS  Google Scholar 

  53. 53

    d’Allivy Kelly, O. et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 103, 082408 (2013).

    Article  ADS  Google Scholar 

  54. 54

    Onbasli, M. C. et al. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. APL Mater. 2, 106102 (2014).

    Article  ADS  Google Scholar 

  55. 55

    Liu, T. et al. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films. J. Appl. Phys. 115, 17A501 (2014).

    Article  Google Scholar 

  56. 56

    Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    Article  ADS  Google Scholar 

  57. 57

    Brächer, T. et al. Time- and power-dependent operation of a parametric spin-wave amplifier. Appl. Phys. Lett. 105, 232409 (2014).

    Article  ADS  Google Scholar 

  58. 58

    Dutta, S., Nikonov, D. E., Manipatruni, S., Young, I. A. & Naeemi, A. SPICE circuit modeling of PMA spin wave bus excited using magnetoelectric effect. IEEE Trans. Magn. 50, 1300411 (2014).

    Article  Google Scholar 

  59. 59

    Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  ADS  Google Scholar 

  60. 60

    Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  ADS  Google Scholar 

  61. 61

    Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nature Mater. 11, 1028–1031 (2012).

    Article  ADS  Google Scholar 

  62. 62

    Hamadeh, A. et al. Full control of the spin-wave damping in a magnetic insulator using spin–orbit torque. Phys. Rev. Lett. 113, 197203 (2014).

    Article  ADS  Google Scholar 

  63. 63

    Bauer, H. G., Chauleau, J-Y., Woltersdorf, G. & Back, C. H. Coupling of spinwave modes in wire structures. Appl. Phys. Lett. 104, 102404 (2014).

    Article  ADS  Google Scholar 

  64. 64

    Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: Linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001).

    Article  ADS  Google Scholar 

  65. 65

    An, T. et al. Unidirectional spin-wave heat conveyer. Nature Mater. 12, 549–553 (2013).

    Article  ADS  Google Scholar 

  66. 66

    Schultheiss, H., Pearson, J. E., Bader, S. D. & Hoffmann, A. Thermoelectric detection of spin waves. Phys. Rev. Lett. 109, 237204 (2012).

    Article  ADS  Google Scholar 

  67. 67

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

  68. 68

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  69. 69

    Sandweg, C. W. et al. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106, 216601 (2011).

    Article  ADS  Google Scholar 

  70. 70

    Chumak, A. V. et al. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012).

    Article  ADS  Google Scholar 

  71. 71

    Obry, B., Vasyuchka, V. I., Chumak, A. V., Serga, A. A. & Hillebrands, B. Spin-wave propagation and transformation in a thermal gradient. Appl. Phys. Lett. 101, 192406 (2012).

    Article  ADS  Google Scholar 

  72. 72

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1995).

    Article  Google Scholar 

  73. 73

    Berger, L. Emission of spin waves by a magnetic multilayer traversed, by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  74. 74

    Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).

    Article  ADS  Google Scholar 

  75. 75

    Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  ADS  Google Scholar 

  76. 76

    Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  ADS  Google Scholar 

  77. 77

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  78. 78

    Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  79. 79

    Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  ADS  Google Scholar 

  80. 80

    Demidov, V. E., Urazhdin, S., Edwards, E. R. J. & Demokritov, S. O. Wide-range control of ferromagnetic resonance by spin Hall effect. Appl. Phys. Lett. 99, 172501 (2011).

    Article  ADS  Google Scholar 

  81. 81

    Castel, V., Vlietstra, N., Ben Youssef, J. & van Wees, B. J. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 101, 132414 (2012).

    Article  ADS  Google Scholar 

  82. 82

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  83. 83

    Ganguly, A. et al. Thickness dependence of spin torque ferromagnetic resonance in Co75Fe25/Pt bilayer films. Appl. Phys. Lett. 104, 072405 (2014).

    Article  ADS  Google Scholar 

  84. 84

    Liu, R. H., Lim, W. L. & Urazhdin, S. Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys. Rev. Lett. 110, 147601 (2013).

    Article  ADS  Google Scholar 

  85. 85

    Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nature Commun. 5, 5616 (2014).

    Article  ADS  Google Scholar 

  86. 86

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  ADS  Google Scholar 

  87. 87

    Hahn, C. et al. Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B 87, 174417 (2013).

    Article  ADS  Google Scholar 

  88. 88

    Xiao, J. & Bauer, G. E. W. Spin-wave excitation in magnetic insulators by spin-transfer torque. Phys. Rev. Lett. 108, 217204 (2012).

    Article  ADS  Google Scholar 

  89. 89

    Padron-Hernandez, E., Azevedo, A. & Rezende, S. M. Amplification of spin waves in yttrium iron garnet films through the spin Hall effect. Appl. Phys. Lett. 99, 192511 (2011).

    Article  ADS  Google Scholar 

  90. 90

    Wang, Z. H., Sun, Y. Y., Wu, M. Z., Tiberkevich, V. & Slavin, A. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011).

    Article  ADS  Google Scholar 

  91. 91

    Padron-Hernandez, E., Azevedo, A. & Rezende, S. M. Amplification of spin waves by thermal spin-transfer torque. Phys. Rev. Lett. 107, 197203 (2011).

    Article  ADS  Google Scholar 

  92. 92

    Lu, L., Sun, Y. Y., Jantz, M. & Wu, M. Z. Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys. Rev. Lett. 108, 257202 (2012).

    Article  ADS  Google Scholar 

  93. 93

    Jungfleisch, M. B. et al. Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures. Appl. Phys. Lett. 102, 062417 (2013).

    Article  ADS  Google Scholar 

  94. 94

    Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  ADS  Google Scholar 

  95. 95

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

    Article  ADS  Google Scholar 

  96. 96

    Weiler, M. et al. Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013).

    Article  ADS  Google Scholar 

  97. 97

    Agrawal, M. et al. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B 89, 224414 (2014).

    Article  ADS  Google Scholar 

  98. 98

    Šimánek, E. & Heinrich, B. Gilbert damping in magnetic multilayers. Phys. Rev. B 67, 144418 (2003).

    Article  ADS  Google Scholar 

  99. 99

    Woltersdorf, G., Buess, M., Heinrich, B. & Back, C. H. Time resolved magnetization dynamics of ultrathin Fe(001) films: Spin-pumping and two-magnon scattering. Phys. Rev. Lett. 95, 037401 (2005).

    Article  ADS  Google Scholar 

  100. 100

    Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B. J. Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

    Article  ADS  Google Scholar 

  101. 101

    Castel, V., Vlietstra, N., van Wees, B. J. & Ben Youssef, J. Yttrium iron garnet thickness and frequency dependence of the spin-charge current conversion in YIG/Pt systems. Phys. Rev. B 90, 214434 (2014).

    Article  ADS  Google Scholar 

  102. 102

    Jungfleisch, M. B. et al. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B 91, 134407 (2015).

    Article  ADS  Google Scholar 

  103. 103

    Burrowes, C. et al. Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett. 100, 092403 (2012).

    Article  ADS  Google Scholar 

  104. 104

    Jungfleisch, M. B., Lauer, V., Neb, R., Chumak, A. V. & Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 103, 022411 (2013).

    Article  ADS  Google Scholar 

  105. 105

    Kapelrud, A. & Brataas, A. Spin pumping and enhanced Gilbert damping in thin magnetic insulator films. Phys. Rev. Lett. 111, 097602 (2013).

    Article  ADS  Google Scholar 

  106. 106

    Schreier, M. et al. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers. J. Phys. D 48, 025001 (2015).

    Article  ADS  Google Scholar 

  107. 107

    Kurebayashi, H. et al. Spin pumping by parametrically excited short-wavelength spin waves. Appl. Phys. Lett. 99, 162502 (2011).

    Article  ADS  Google Scholar 

  108. 108

    Iguchi, R. et al. Spin pumping by nonreciprocal spin waves under local excitation. Appl. Phys. Lett. 102, 022406 (2013).

    Article  ADS  Google Scholar 

  109. 109

    Gulyaev, Y. V. et al. Ferromagnetic films with magnon bandgap periodic structures: Magnon crystals. JETP Lett. 77, 567–570 (2003).

    Article  ADS  Google Scholar 

  110. 110

    Gubbiotti, G. et al. Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D 43, 264003 (2010).

    Article  ADS  Google Scholar 

  111. 111

    Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

    Article  Google Scholar 

  112. 112

    Topp, J., Heitmann, D., Kostylev, M. P. & Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 104, 207205 (2010).

    Article  ADS  Google Scholar 

  113. 113

    Chumak, A. V., Neumann, T., Serga, A. A., Hillebrands, B. & Kostylev, M. P. A current-controlled, dynamic magnonic crystal. J. Phys. D 42, 205005 (2009).

    Article  ADS  Google Scholar 

  114. 114

    Nikitin, A. A. et al. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal. Appl. Phys. Lett. 106, 102405 (2015).

    Article  ADS  Google Scholar 

  115. 115

    Drozdovskii, A. V., Cherkasskii, M. A., Ustinov, A. B., Kovshikov, N. G. & Kalinikos, B. A. Formation of envelope solitons of spin-wave packets propagating in thin-film magnon crystals. JETP Lett. 91, 16–20 (2010).

    Article  ADS  Google Scholar 

  116. 116

    Wang, Z. K. et al. Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal. Appl. Phys. Lett. 94, 083112 (2009).

    Article  ADS  Google Scholar 

  117. 117

    Chumak, A. V. et al. Spin-wave propagation in a microstructured magnonic crystal. Appl. Phys. Lett. 95, 262508 (2009).

    Article  ADS  Google Scholar 

  118. 118

    Chumak, A. V., Serga, A. A., Hillebrands, B. & Kostylev, M. P. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 93, 022508 (2008).

    Article  ADS  Google Scholar 

  119. 119

    Obry, B. et al. A micro-structured ion-implanted magnonic crystal. Appl. Phys. Lett. 102, 202403 (2013).

    Article  ADS  Google Scholar 

  120. 120

    Tacchi, S. et al. Magnetic normal modes in squared antidot array with circular holes: A combined Brillouin light scattering and broadband ferromagnetic resonance study. IEEE Trans. Magn. 46, 172–178 (2010).

    Article  ADS  Google Scholar 

  121. 121

    Reed, K. W., Owens, J. M. & Carter, R. L. Current status of magnetostatic reflective array filters. Circuits Syst. Signal Process. 4, 157–180 (1985).

    Article  ADS  Google Scholar 

  122. 122

    Karenowska, A. D., Chumak, A. V., Serga, A. A., Gregg, J. F. & Hillebrands, B. Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring. Appl. Phys. Lett. 96, 082505 (2010).

    Article  ADS  Google Scholar 

  123. 123

    Inoue, M. et al. Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature. Appl. Phys. Lett. 98, 132511 (2011).

    Article  ADS  Google Scholar 

  124. 124

    Karenowska, A. D. et al. Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. Phys. Rev. Lett. 108, 015505 (2012).

    Article  ADS  Google Scholar 

  125. 125

    Vogel, M. et al. Optically-reconfigurable magnetic materials. Nature Phys. 11, 487–491 (2015).

    Article  ADS  Google Scholar 

  126. 126

    Chumak, A. V. et al. All-linear time reversal by a dynamic artificial crystal. Nature Commun. 1, 141 (2010).

    Article  ADS  Google Scholar 

  127. 127

    Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater. 13, 11–20 (2014).

    Article  ADS  Google Scholar 

  128. 128

    Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005).

    Article  ADS  Google Scholar 

  129. 129

    Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Spectroscopic confirmation of linear relation between Heisenberg- and interfacial Dzyaloshinskii–Moriya-exchange in polycrystalline metal films. Preprint at http://arxiv.org/abs/1410.6243 (2014).

  130. 130

    Di, K. et al. Direct observation of the Dzyaloshinskii–Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).

    Article  ADS  Google Scholar 

  131. 131

    Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

    Article  ADS  Google Scholar 

  132. 132

    Karenowska, A. D., Patterson, A. D., Peterer, M. J., Magnússon, E. B. & Leek, P. J. Excitation and detection of propagating spin waves at the single magnon level. Preprint at http://arxiv.org/abs/1502.06263 (2015).

  133. 133

    Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nature Phys. 8, 491–496 (2012).

    Article  ADS  Google Scholar 

  134. 134

    Khomeriki, R., Chotorlishvili, L., Malomed, B. A. & Berakdar, J. Creation and amplification of electromagnon solitons by electric field in nanostructured multiferroics. Phys. Rev. B 91, 041408(R) (2015).

    Article  ADS  Google Scholar 

  135. 135

    Dutta, S. et al. Non-volatile clocked spin wave interconnect for beyond-CMOS nanomagnet pipelines. Sci. Rep. 5, 9861 (2015).

    Article  Google Scholar 

  136. 136

    Urazuka, Y., Imamura, K., Oyabu, S., Tanaka, T. & Matsuyama, K. Successive logic-in-memory operation in spin wave-based devices with domain wall data coding scheme. IEEE Trans. Magn. 50, 3401303 (2014).

    Article  Google Scholar 

  137. 137

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  138. 138

    Schutte, C. & Garst, M. Magnon-skyrmion scattering in chiral magnets. Phys. Rev. B 90, 094423 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG) and from by EU-FET (Grant InSpin 612759) is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Chumak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chumak, A., Vasyuchka, V., Serga, A. et al. Magnon spintronics. Nature Phys 11, 453–461 (2015). https://doi.org/10.1038/nphys3347

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing