Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of the mobility edge for 3D Anderson localization


Anderson localization is a universal phenomenon affecting non-interacting quantum particles in a disordered environment. In three spatial dimensions, theory predicts a quantum phase transition from localization to diffusion at a critical energy, the mobility edge, which depends on the disorder strength. Although it has been recognized already long ago as a prominent feature of disordered systems, a complete experimental characterization of the mobility edge is still missing. Here we report the measurement of the mobility edge for ultracold atoms in a disordered potential created by laser speckles. We are able to control both the disorder strength and the energy of the system, so as to probe the position of the localization threshold in the disorder–energy plane. Our results might allow a direct experiment–theory comparison, which is a prerequisite to study the even more challenging problem of disorder and interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D speckle disorder.
Figure 2: Expansion and localization dynamics.
Figure 3: Momentum and energy distribution.
Figure 4: Excitation spectrum.
Figure 5: Measured mobility edge versus the disorder strength.

Similar content being viewed by others


  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Mott, N. F. Metal–insulator transitions. Phys. Today 31(11), 42–47 (1978).

    Article  Google Scholar 

  3. Evers, F. & Mirlin, A. D. Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008).

    Article  ADS  Google Scholar 

  4. Abrahams, E. (ed.) 50 Years of Anderson Localization (World Scientific, 2012).

    MATH  Google Scholar 

  5. Katsumoto, S., Komori, F., Sano, N. & Kobayashi, S. Fine tuning of metal-insulator transition in Al0.3Ga0.7As using persistent photoconductivity. J. Phys. Soc. Jpn 56, 2259–2262 (1987).

    Article  ADS  Google Scholar 

  6. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  ADS  Google Scholar 

  7. Vollhardt, D. & Wölfle, P. in Electronic Phase Transitions (eds Hanke, W. & Kopaev, Yu. V.) 1–78 (Elsevier, 1992).

    Book  Google Scholar 

  8. Kramer, B. & MacKinnon, A. Localization: Theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993).

    Article  ADS  Google Scholar 

  9. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  Google Scholar 

  10. Hu, H. et al. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 845–848 (2008).

    Article  Google Scholar 

  11. Sperling, T. et al. Direct determination of the transition to localization of light in three dimensions. Nature Photon. 7, 48–52 (2013).

    Article  ADS  Google Scholar 

  12. Chabé, J. et al. Experimental observation of the Anderson metal–insulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008).

    Article  ADS  Google Scholar 

  13. Lemarié, G., Lignier, H., Delande, D., Szriftgiser, P. & Garreau, J. C. Critical state of the Anderson transition: Between a metal and an insulator. Phys. Rev. Lett. 105, 090601 (2010).

    Article  ADS  Google Scholar 

  14. Lopez, M., Clément, J-F., Szriftgiser, P., Garreau, J. C. & Delande, D. Experimental test of universality of the Anderson transition. Phys. Rev. Lett. 108, 095701 (2012).

    Article  ADS  Google Scholar 

  15. Lopez, M. et al. Phase diagram of the anisotropic Anderson transition with the atomic kicked rotor: Theory and experiment. New J. Phys. 15, 065013 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. Billy, J. et al. Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  17. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

  18. Kondov, S. S. et al. Three-dimensional Anderson localization of ultracold matter. Science 334, 66–68 (2011).

    Article  ADS  Google Scholar 

  19. Jendrzejewski, F. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Phys. 8, 398–403 (2012).

    Article  ADS  Google Scholar 

  20. Roati, G. et al. 39K Bose–Einstein condensate with tunable interactions. Phys. Rev. Lett. 99, 010403 (2007).

    Article  ADS  Google Scholar 

  21. Shapiro, B. Cold atoms in the presence of disorder. J. Phys. A 45, 143001 (2012).

    Article  ADS  Google Scholar 

  22. Yedjour, A. & Van Tiggelen, B. A. Diffusion and localization of cold atoms in 3D optical speckle. Eur. Phys. J. D 59, 249–255 (2010).

    Article  ADS  Google Scholar 

  23. Piraud, M., Pezzé, L. & Sanchez-Palencia, L. Matter wave transport and Anderson localization in anisotropic three-dimensional disorder. Eur. Phys. Lett. 99, 50003 (2012).

    Article  ADS  Google Scholar 

  24. Piraud, M., Pezzé, L. & Sanchez-Palencia, L. Quantum transport of atomic matter waves in anisotropic two-dimensional and three-dimensional disorder. New J. Phys. 15, 075007 (2013).

    Article  ADS  Google Scholar 

  25. Delande, D. & Orso, G. Mobility edge for cold atoms in laser speckle potentials. Phys. Rev. Lett. 113, 060601 (2014).

    Article  ADS  Google Scholar 

  26. Landini, M. et al. Direct evaporative cooling of 39K atoms to Bose–Einstein condensation. Phys. Rev. A 86, 033421 (2012).

    Article  ADS  Google Scholar 

  27. Kuhn, R. C., Sigwarth, O., Miniatura, C., Delande, D. & Müller, C. A. Coherent matter wave transport in speckle potentials. New J. Phys. 9, 161 (2007).

    Article  ADS  Google Scholar 

  28. Mahan, G. D. Many Particle Physics (Springer, 1990).

    Book  Google Scholar 

  29. Lifshits, I. M., Gredeskui, S. A. & Pastur, L. A. Introduction to the Theory of Disordered Systems (Wiley, 1988).

    Google Scholar 

  30. Piraud, M., Sanchez-Palencia, L. & Van Tiggelen, B. Anderson localization of matter waves in 3D anisotropic disordered potentials. Phys. Rev. A 90, 063639 (2014).

    Article  ADS  Google Scholar 

  31. Fratini, E. & Pilati, S. Anderson localization of matter waves in quantum-chaos theory. Preprint at (2015).

  32. McGehee, W. R., Kondov, S. S., Xu, W., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization in variable scale disorder. Phys. Rev. Lett. 111, 145303 (2013).

    Article  ADS  Google Scholar 

  33. Müller, C. A. & Shapiro, B. Comment on “Three-Dimensional Anderson Localization in Variable Scale Disorder”. Phys. Rev. Lett. 113, 099601 (2014).

    Article  ADS  Google Scholar 

  34. McGehee, W. R., Kondov, S. S., Xu, W., Zirbel, J. J. & DeMarco, B. McGehee et al. Reply. Phys. Rev. Lett. 113, 099602 (2014).

    Article  ADS  Google Scholar 

  35. Huang, K. & Meng, H-F. Hard-sphere Bose gas in random external potentials. Phys. Rev. Lett. 69, 644–647 (1992).

    Article  ADS  Google Scholar 

  36. Nattermann, T. & Pokrovsky, V. L. Bose–Einstein condensates in strongly disordered traps. Phys. Rev. Lett. 100, 060402 (2008).

    Article  ADS  Google Scholar 

  37. Pilati, S., Giorgini, S. & Prokof’ev, N. Superfluid transition in a Bose gas with correlated disorder. Phys. Rev. Lett. 102, 150402 (2009).

    Article  ADS  Google Scholar 

  38. Crowell, P. A., Van Keulz, F. W. & Reppy, J. D. Onset of superfluidity in 4He films adsorbed on disordered substrates. Phys. Rev. B 55, 12620–12634 (1997).

    Article  ADS  Google Scholar 

  39. Lye, J. E. et al. Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95, 070401 (2005).

    Article  ADS  Google Scholar 

  40. Zapf, V., Jaime, M. & Batista, C. D. Bose–Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563–614 (2014).

    Article  ADS  Google Scholar 

Download references


We acknowledge discussions with V. Josse and L. Pezzé. This work was supported by ERC (grants 247371 and 258325), and partially by EU - H2020 research and innovation programme (grant 641122), INFN (MICRA collaboration) and MIUR (grant RBFR08H058).

Author information

Authors and Affiliations



G.Semeghini and M.L. designed the experiment; G.Semeghini, M.L. and G.M. analysed the data and performed the numerical simulations; all the other authors participated to the experiment, data analysis, discussion of the results and writing of the manuscript.

Corresponding author

Correspondence to G. Modugno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semeghini, G., Landini, M., Castilho, P. et al. Measurement of the mobility edge for 3D Anderson localization. Nature Phys 11, 554–559 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing