Letter | Published:

Optically reconfigurable magnetic materials

Nature Physics volume 11, pages 487491 (2015) | Download Citation

Abstract

Structuring of materials is the most general approach for controlling waves in solids. As spin waves—eigen-excitations of the electrons’ spin system—are free from Joule heating, they are of interest for a range of applications, such as processing1,2,3,4,5, filtering6,7,8 and short-time data storage9. Whereas all these applications rely on predefined constant structures, a dynamic variation of the structures would provide additional, novel applications. Here, we present an approach for producing fully tunable, two-dimensionally structured magnetic materials. Using a laser, we create thermal landscapes in a magnetic medium that result in modulations of the saturation magnetization and in the control of spin-wave characteristics. This method is demonstrated by the realization of fully reconfigurable one- and two-dimensional magnonic crystals—artificial periodic magnetic lattices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  2. 2.

    , & Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

  3. 3.

    et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

  4. 4.

    et al. All-linear time reversal by a dynamic artificial crystal. Nature Commun. 1, 141 (2010).

  5. 5.

    et al. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett. 105, 152410 (2014).

  6. 6.

    , , & The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

  7. 7.

    & Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

  8. 8.

    , & YIG magnonics. J. Phys. D 43, 264002 (2010).

  9. 9.

    et al. Storage-recovery phenomenon in magnonic crystal. Phys. Rev. Lett. 108, 257207 (2012).

  10. 10.

    , & Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782 (2012).

  11. 11.

    et al. Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007).

  12. 12.

    , , & Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 93, 022508 (2008).

  13. 13.

    et al. Microscopic magnetic structuring of a spin-wave waveguide by ion implantation in a Ni81Fe19 layer. Appl. Phys. Lett. 102, 022409 (2013).

  14. 14.

    et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

  15. 15.

    et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

  16. 16.

    , , , & Spin wave nonreciprocity for logic device applications. Sci. Rep. 3, 3160 (2013).

  17. 17.

    , & Realization of a mesoscopic reprogrammable magnetic logic based on a nanoscale reconfigurable magnonic crystal. Appl. Phys. Lett. 100, 073114 (2012).

  18. 18.

    et al. Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D 43, 264003 (2010).

  19. 19.

    & Magnonics: Spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

  20. 20.

    , , , & A current-controlled, dynamic magnonic crystal. J. Phys. D 42, 205005 (2009).

  21. 21.

    , , & Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 104, 207205 (2010).

  22. 22.

    & in Smart Nanoparticles Technology (ed. Hashim, A.) (InTech, 2012).

  23. 23.

    et al. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 094410 (2013).

  24. 24.

    , , & Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures. Phys. Rev. B 89, 134406 (2014).

  25. 25.

    & Spin Waves: Theory and Applications (Springer, 2009).

  26. 26.

    , , , & Spin-wave propagation and transformation in a thermal gradient. Appl. Phys. Lett. 101, 192406 (2012).

  27. 27.

    , & Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

  28. 28.

    et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2010).

  29. 29.

    et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

  30. 30.

    et al. Directional control of spin-wave emission by spatially shaped light. Nature Photon. 6, 662–666 (2012).

  31. 31.

    , & Spin caloritronics. Nature Mater. 11, 391–399 (2012).

  32. 32.

    et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

  33. 33.

    , , , & Nonthermal optical control of magnetism and ultrafast laser-induced spin dynamics in solids. J. Phys. Condens. Matter 19, 043201 (2007).

  34. 34.

    & A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

  35. 35.

    , & Review of iterative Fourier-transform algorithms for beam shaping applications. Opt. Eng. 43, 2549–2555 (2004).

  36. 36.

    & Multi foci with diffraction limited resolution. Opt. Express 21, 21708–21713 (2013).

Download references

Acknowledgements

The authors wish to thank the Nano Structuring Center (NSC) of the TU Kaiserslautern for support with the sample preparation. Financial support by DFG priority program SPP 1538 ‘Spin Caloric Transport’ (project VA 735/1-2) is gratefully acknowledged.

Author information

Affiliations

  1. Department of Physics and State Research Center OPTIMAS, University of Kaiserslautern, Fraunhofer-Platz I, 67663 Kaiserslautern, Germany

    • Marc Vogel
    • , Andrii V. Chumak
    • , Erik H. Waller
    • , Thomas Langner
    • , Vitaliy I. Vasyuchka
    • , Burkard Hillebrands
    •  & Georg von Freymann
  2. Fraunhofer-Institute for Physical Measurement Techniques IPM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

    • Georg von Freymann

Authors

  1. Search for Marc Vogel in:

  2. Search for Andrii V. Chumak in:

  3. Search for Erik H. Waller in:

  4. Search for Thomas Langner in:

  5. Search for Vitaliy I. Vasyuchka in:

  6. Search for Burkard Hillebrands in:

  7. Search for Georg von Freymann in:

Contributions

M.V. and G.v.F. devised and planned the project. M.V. realized the experimental set-up, performed the measurements and analysed the data. A.V.C. advised on the theory and together with M.V. wrote a first draft of the manuscript. E.H.W. supported the hologram generation. V.I.V. and T.L. prepared the samples. V.I.V., B.H. and G.v.F. led the project. All authors discussed the results and contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Marc Vogel.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3325

Further reading