Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy flow in quantum critical systems far from equilibrium

An Erratum to this article was published on 01 October 2015

This article has been updated

Abstract

Characterizing the behaviour of strongly coupled quantum systems out of equilibrium is a cardinal challenge for both theory and experiment. With diverse applications ranging from the dynamics of the quark–gluon plasma to transport in novel states of quantum matter, establishing universal results and organizing principles out of equilibrium is crucial. We present a universal description of energy transport between quantum critical heat baths in arbitrary dimension. The current-carrying non-equilibrium steady state (NESS) is a Lorentz-boosted thermal state. In the context of gauge/gravity duality this reveals an intimate correspondence between far-from-equilibrium transport and black hole uniqueness theorems. We provide analytical expressions for the energy current and the generating function of energy current fluctuations, together with predictions for experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal transport set-up.
Figure 2: AdS/CFT correspondence.
Figure 3: Conformal hydrodynamics.

Similar content being viewed by others

Change history

  • 03 September 2015

    In the print and PDF versions of this Article originally published the digital object identifier contained a typographical error and should have read 10.1038/nphys3320. This error has now been corrected in the online versions.

References

  1. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    Article  ADS  Google Scholar 

  2. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Article  ADS  Google Scholar 

  3. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    Article  ADS  Google Scholar 

  4. Baumann, K., Mottl, R., Brennecke, F. & Esslinger, T. Exploring symmetry breaking at the Dicke quantum phase transition. Phys. Rev. Lett. 107, 140402 (2011).

    Article  ADS  Google Scholar 

  5. Smith, R. P., Beattie, S., Moulder, S., Campbell, R. L. D. & Hadzibabic, Z. Condensation dynamics in a quantum-quenched Bose gas. Phys. Rev. Lett. 109, 105301 (2012).

    Article  ADS  Google Scholar 

  6. Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    Article  ADS  Google Scholar 

  7. Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Proc. Natl Acad. Sci. USA 112, 3641–3646 (2015).

    ADS  Google Scholar 

  8. Brantut, J-P. et al. A thermoelectric heat engine with ultracold atoms. Science 342, 713–715 (2013).

    Article  ADS  Google Scholar 

  9. Schmidutz, T. F. et al. Quantum Joule–Thomson effect in a saturated homogeneous Bose gas. Phys. Rev. Lett. 112, 040403 (2014).

    Article  ADS  Google Scholar 

  10. Calabrese, P. & Cardy, J. Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006).

    Article  ADS  Google Scholar 

  11. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    Article  ADS  Google Scholar 

  12. Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

    Article  ADS  Google Scholar 

  13. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  14. Rigol, M. Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009).

    Article  ADS  Google Scholar 

  15. Calabrese, P., Essler, F. H. L. & Fagotti, M. Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett. 106, 227203 (2011).

    Article  ADS  Google Scholar 

  16. Esposito, M., Harbola, U. & Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009); erratum 86, 1125 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bernard, D. & Doyon, B. Energy flow in non-equilibrium conformal field theory. J. Phys. A 45, 362001 (2012).

    Article  MathSciNet  Google Scholar 

  18. Bernard, D. & Doyon, B. Non-equilibrium steady states in conformal field theory. Ann. Henri Poincaré 16, 113–161 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. Bernard, D. & Doyon, B. Time-reversal symmetry and fluctuation relations in non-equilibrium quantum steady states. J. Phys. A 46, 372001 (2013).

    Article  MathSciNet  Google Scholar 

  20. Karrasch, C., Ilan, R. & Moore, J. E. Nonequilibrium thermal transport and its relation to linear response. Phys. Rev. B 88, 195129 (2013).

    Article  ADS  Google Scholar 

  21. Karrasch, C., Bardarson, J. H. & Moore, J. E. Finite-temperature dynamical density matrix renormalization group and the Drude weight of spin-1/2 chains. Phys. Rev. Lett. 108, 227206 (2012).

    Article  ADS  Google Scholar 

  22. Karrasch, C., Bardarson, J. H. & Moore, J. E. Reducing the numerical effort of finite-temperature density matrix renormalization group calculations. New J. Phys. 15, 083031 (2013).

    Article  ADS  Google Scholar 

  23. Huang, Y., Karrasch, C. & Moore, J. E. Scaling of electrical and thermal conductivities in an almost integrable chain. Phys. Rev. B 88, 115126 (2013).

    Article  ADS  Google Scholar 

  24. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. Mazur, P. Non-ergodicity of phase functions in certain systems. Physica 43, 533–545 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  26. Cardy, J. The ubiquitous “c”: From the Stefan–Boltzmann law to quantum information. J. Stat. Mech. 2010, P10004 (2010).

    Article  MathSciNet  Google Scholar 

  27. Hartnoll, S. A. Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  28. McGreevy, J. Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010).

    Article  Google Scholar 

  29. Sachdev, S. What can gauge-gravity duality teach us about condensed matter physics? Annu. Rev. Condens. Mat. 3, 9–33 (2012).

    Article  Google Scholar 

  30. Danielsson, U. H., Keski-Vakkuri, E. & Kruczenski, M. Spherically collapsing matter in AdS, holography, and shellons. Nucl. Phys. B 563, 279–292 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  31. Bhattacharyya, S. & Minwalla, S. Weak field black hole formation in asymptotically AdS spacetimes. JHEP 0909, 034 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  32. Albash, T. & Johnson, C. V. Evolution of holographic entanglement entropy after thermal and electromagnetic quenches. New J. Phys. 13, 045017 (2011).

    Article  ADS  Google Scholar 

  33. Das, S., Nishioka, T. & Takayanagi, T. Probe branes, time-dependent couplings and thermalization in AdS/CFT. JHEP 1007, 071 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  34. Chesler, P. M. & Yaffe, L. G. Horizon formation and far-from-equilibrium isotropization in a supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 102, 211601 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. Auzzi, R., Elitzur, S., Gudnason, S. B. & Rabinovici, E. On periodically driven AdS/CFT. JHEP 1311, 016 (2013).

    Article  ADS  Google Scholar 

  36. Murata, K., Kinoshita, S. & Tanahashi, N. Non-equilibrium condensation process in a holographic superconductor. JHEP 1007, 050 (2010).

    Article  ADS  Google Scholar 

  37. Sonner, J. & Green, A. G. Hawking radiation and nonequilibrium quantum critical current noise. Phys. Rev. Lett. 109, 091601 (2012).

    Article  ADS  Google Scholar 

  38. Bhaseen, M. J., Gauntlett, J. P., Simons, B. D., Sonner, J. & Wiseman, T. Holographic superfluids and the dynamics of symmetry breaking. Phys. Rev. Lett. 110, 015301 (2013).

    Article  ADS  Google Scholar 

  39. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).

    Article  ADS  Google Scholar 

  40. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    Article  ADS  Google Scholar 

  41. Fischetti, S. & Marolf, D. Flowing funnels: Heat sources for field theories and the AdS3 dual of CFT2 Hawking radiation. Class. Quantum Gravity 29, 105004 (2012).

    Article  ADS  Google Scholar 

  42. Figueras, P. & Wiseman, T. Stationary holographic plasma quenches and numerical methods for non-Killing horizons. Phys. Rev. Lett. 110, 171602 (2013).

    Article  ADS  Google Scholar 

  43. Fischetti, S., Marolf, D. & Santos, J. AdS flowing black funnels: Stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT. Class. Quantum Gravity 30, 075001 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  44. Fazio, R., Hekking, F. W. J. & Khmelnitskii, D. E. Anomalous thermal transport in quantum wires. Phys. Rev. Lett. 80, 5611–5614 (1998).

    Article  ADS  Google Scholar 

  45. Rego, L. G. C. & Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998).

    Article  ADS  Google Scholar 

  46. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  ADS  Google Scholar 

  47. Kraus, P. Lectures on black holes and the AdS3/CFT2 correspondence. Lecture Notes Phys. 755, 193–247 (2008).

    ADS  MATH  Google Scholar 

  48. Baier, R., Romatschke, P., Son, D. T., Starinets, A. O. & Stephanov, M. A. Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 0804, 100 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  49. Green, S. R., Carrasco, F. & Lehner, L. Holographic path to the turbulent side of gravity. Phys. Rev. X 4, 011001 (2014).

    Google Scholar 

  50. Adams, A., Chesler, P. M. & Liu, H. Holographic turbulence. Phys. Rev. Lett. 112, 151602 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Benenowski, D. Bernard, P. Chesler, D. Haldane, C. Herzog, D. Marolf, B. Najian, C-A. Pillet, S. Sachdev and A. Starinets for helpful comments; we especially thank A. Green for suggesting the interpretation of TL, R in d = 1 as Doppler-shifted radiation. M.J.B. and K.S. thank the Kavli Royal Society Center Chicheley Hall and the Isaac Newton Institute, Cambridge for hospitality. M.J.B. and B.D. thank The Galileo Galilei Institute for Theoretical Physics. B.D. thanks Université Paris Diderot, where part of this work was done, for financial support through a visiting professorship. A.L. is supported by the Smith Family Science and Engineering Graduate Fellowship and thanks the Perimeter Institute for hospitality. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation. This work was supported in part by a VICI grant of the Netherlands Organization for Scientific Research (NWO), by the Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW) and by the Foundation for Research into Fundamental Matter (FOM).

Author information

Authors and Affiliations

Authors

Contributions

M.J.B. initiated and coordinated the project. B.D. led the field theory and fluctuation analysis. A.L. led the hydrodynamic analysis, and wrote and performed numerical simulations. K.S. led the gauge-gravity analysis. M.J.B. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to M. J. Bhaseen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 896 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 1306 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 2413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaseen, M., Doyon, B., Lucas, A. et al. Energy flow in quantum critical systems far from equilibrium. Nature Phys 11, 509–514 (2015). https://doi.org/10.1038/nphys3320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing