Letter | Published:

Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement

Nature Physics volume 11, pages 389392 (2015) | Download Citation

Abstract

Continuous observation of an oscillator results in quantum back-action, which limits the knowledge acquired by the measurement. A careful balance between the information obtained and the back-action disturbance leads to the standard quantum limit of precision. This limit can be surpassed by a measurement with strength modulated at twice the oscillator frequency, resulting in a squeezed state of the oscillator motion, as proposed decades ago1,2,3. Here, we report the generation of a squeezed state of an oscillator by a stroboscopic back-action-evading measurement. The oscillator is the spin of an atomic ensemble precessing in a magnetic field. The oscillator initially prepared nearly in the ground state is stroboscopically coupled to an optical mode of a cavity. A measurement of the output light results in a 2.2 ± 0.3 dB squeezed state of the oscillator. The demonstrated spin-squeezed state of 108 atoms with an angular spin variance of 8 × 10−10 rad2 is promising for magnetic field sensing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Optimal quantum measurements in detectors of gravitation radiation. JETP Lett. 27, 276–280 (1978).

  2. 2.

    , , , & Quantum nondemolition measurements of harmonic oscillators. Phys. Rev. Lett. 40, 667–671 (1978).

  3. 3.

    , & Quantum nondemolition measurements. Science 209, 547–557 (1980).

  4. 4.

    , , , & Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996).

  5. 5.

    et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008).

  6. 6.

    , & Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

  7. 7.

    , , , & Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

  8. 8.

    et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

  9. 9.

    , & Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

  10. 10.

    , & Stroboscopic backaction evasion in a dense alkali-metal vapor. Phys. Rev. Lett. 106, 143601 (2011).

  11. 11.

    et al. Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344, 1262–1265 (2014).

  12. 12.

    & Trajectories without quantum uncertainties. Ann. Phys. 527, A15–A20 (2015).

  13. 13.

    et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

  14. 14.

    et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photon. 8, 731–736 (2014).

  15. 15.

    et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

  16. 16.

    et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

  17. 17.

    , & States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

  18. 18.

    & Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

  19. 19.

    , , & Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method. J. Opt. B 6, 5–14 (2004).

  20. 20.

    et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

  21. 21.

    & Effective operator formalism in optical pumping. Phys. Rev. 163, 12–25 (1967).

  22. 22.

    , , , & Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

  23. 23.

    , , & Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

  24. 24.

    , , & Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010).

Download references

Acknowledgements

This work was supported by the ERC grant INTERFACE, DARPA project QUASAR and EU grants SIQS and MALICIA. K.J. acknowledges support from the Carlsberg Foundation. G.V. gratefully acknowledges help and support from P. Karadaki.

Author information

Affiliations

  1. Niels Bohr Institute, Copenhagen University, Blegdamsvej 17 2100 Copenhagen, Denmark

    • G. Vasilakis
    • , H. Shen
    • , K. Jensen
    • , M. Balabas
    • , D. Salart
    • , B. Chen
    •  & E. S. Polzik
  2. Department of Physics, St Petersburg State University, Universitetskii pr. 28 198504 Staryi Peterhof, Russia

    • M. Balabas
  3. Quantum Institute of Atom and Light, State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China

    • B. Chen

Authors

  1. Search for G. Vasilakis in:

  2. Search for H. Shen in:

  3. Search for K. Jensen in:

  4. Search for M. Balabas in:

  5. Search for D. Salart in:

  6. Search for B. Chen in:

  7. Search for E. S. Polzik in:

Contributions

G.V. and H.S. contributed equally to this work. G.V., H.S., K.J., D.S. and B.C. performed the experiments and contributed to the analysis, M.B. and D.S. fabricated the microcell. G.V., H.S., K.J. and E.S.P. wrote the paper and all the authors provided feedback to the manuscript. E.S.P. supervised the research.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to E. S. Polzik.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3280

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing