Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission

Abstract

Singlet exciton fission is the process in organic semiconductors through which a spin-singlet exciton converts into a pair of spin-triplet excitons residing on different chromophores, entangled in an overall spin-zero state. For some systems, singlet fission has been shown to occur on the 100 fs timescale and with a 200% quantum yield, but the mechanism of this process remains uncertain. Here we study a model singlet fission system, TIPS-pentacene, using ultrafast vibronic spectroscopy. We observe that vibrational coherence in the initially photogenerated singlet state is transferred to the triplet state and show that this behaviour is effectively identical to ultrafast internal conversion for polyenes in solution. This similarity in vibronic dynamics suggests that both multi-molecular singlet fission and single-molecular internal conversion are mediated by the same underlying relaxation processes, based on strong coupling between nuclear and electronic degrees of freedom. In its most efficient form this leads to a conical intersection between the coupled electronic states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photophysics and relevant transitions for impulsive vibrational spectroscopy of TIPS-pentacene.
Figure 2: Transient absorption spectroscopy of TIPS-pentacene excited with a resonant 10 fs pulse.
Figure 3: Vibrational coherence transfer during singlet exciton fission.
Figure 4: Vibrational coherence transfer in DPO.
Figure 5: Schematic of singlet fission via a conical intersection.

Similar content being viewed by others

References

  1. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  Google Scholar 

  2. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    Article  Google Scholar 

  3. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nature Chem. 6, 492–497 (2014).

    Article  ADS  Google Scholar 

  4. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  ADS  Google Scholar 

  5. Johnson, R. C. & Merrifield, R. E. Effects of magnetic fields on the mutual annihiliation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896–902 (1970).

    Article  ADS  Google Scholar 

  6. Beljonne, D., Yamagata, H., Brédas, J. L., Spano, F. C. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    Article  ADS  Google Scholar 

  7. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).

    Article  ADS  Google Scholar 

  8. Greyson, E. C., Vura-Weis, J., Michl, J. & Ratner, M. A. Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114, 14168–14177 (2010).

    Article  Google Scholar 

  9. Zimmerman, P. M., Musgrave, C. B. & Head-Gordon, M. A correlated electron view of singlet fission. Acc. Chem. Res. 46, 1339–1347 (2013).

    Article  Google Scholar 

  10. Zimmerman, P. M., Zhang, Z. & Musgrave, C. B. Singlet fission in pentacene through multi-exciton quantum states. Nature Chem. 2, 648–652 (2010).

    Article  ADS  Google Scholar 

  11. Renaud, N., Sherratt, P. A. & Ratner, M. A. Mapping the relation between stacking geometries and singlet fission yield in a class of organic crystals. J. Phys. Chem. Lett. 4, 1065–1069 (2013).

    Article  Google Scholar 

  12. Chan, W-L. et al. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).

    Article  Google Scholar 

  13. Rao, A., Wilson, M. W. B., Albert-Seifried, S., Di Pietro, R. & Friend, R. H. Photophysics of pentacene thin films: The role of exciton fission and heating effects. Phys. Rev. B 84, 195411 (2011).

    Article  ADS  Google Scholar 

  14. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nature Chem. 5, 1019–1024 (2013).

    Article  ADS  Google Scholar 

  15. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    Article  Google Scholar 

  16. Burdett, J. J., Piland, G. B. & Bardeen, C. J. Magnetic field effects and the role of spin states in singlet fission. Chem. Phys. Lett. 585, 1–10 (2013).

    Article  ADS  Google Scholar 

  17. Wilson, M. W. B. et al. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135, 16680–16688 (2013).

    Article  Google Scholar 

  18. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    Article  ADS  Google Scholar 

  19. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Phys. 9, 113–118 (2013).

    Article  ADS  Google Scholar 

  20. Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    Article  ADS  Google Scholar 

  21. Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nature Chem. 6, 196–201 (2014).

    Article  ADS  Google Scholar 

  22. Köppel, H., Domcke, W. & Cederbaum, L. S. in Advances in Chemical Physics Vol. 57 (eds Prigogine, I. & Rice, S. A.) 59–246 (John Wiley, 1984).

    Google Scholar 

  23. Kühl, A. & Domcke, W. Multilevel redfield description of the dissipative dynamics at conical intersections. J. Chem. Phys. 116, 263–274 (2002).

    Article  ADS  Google Scholar 

  24. Liebel, M., Schnedermann, C. & Kukura, P. Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene. Phys. Rev. Lett. 112, 198302 (2014).

    Article  ADS  Google Scholar 

  25. Ruhman, S., Joly, A. G. & Nelson, K. A. Coherent molecular vibrational motion observed in the time domain through impulsive stimulated Raman scattering. IEEE J. Quant. Electron. 24, 460–469 (1988).

    Article  ADS  Google Scholar 

  26. Wende, T., Liebel, M., Schnedermann, C., Pethick, R. J. & Kukura, P. Population-controlled impulsive vibrational spectroscopy: Background- and baseline-free Raman spectroscopy of excited electronic states. J. Phys. Chem. A 118, 9976–9984 (2014).

    Article  Google Scholar 

  27. Pollard, W. T. & Mathies, R. A. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43, 497–523 (1992).

    Article  ADS  Google Scholar 

  28. Johnson, A. E. & Myers, A. B. A comparison of time- and frequency-domain resonance Raman spectroscopy in triiodide. J. Chem. Phys. 104, 2497–2507 (1996).

    Article  ADS  Google Scholar 

  29. Feng, X., Luzanov, A. V. & Krylov, A. I. Fission of entangled spins: An electronic structure perspective. J. Phys. Chem. Lett. 4, 3845–3852 (2013).

    Article  Google Scholar 

  30. Casanova, D. Electronic structure study of singlet-fission in tetracene derivatives. J. Chem. Theory Comput. 10, 324–334 (2014).

    Article  Google Scholar 

  31. Musser, A. J. et al. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013).

    Article  Google Scholar 

  32. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010).

    Article  Google Scholar 

  33. Kitney-Hayes, K. A., Ferro, A. A., Tiwari, V. & Jonas, D. M. Two-dimensional Fourier transform electronic spectroscopy at a conical intersection. J. Chem. Phys. 140, 124312 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.R. thanks Corpus Christi College, Cambridge for a Research Fellowship. T.W. was supported by a Marie Curie Intra European Fellowship [PIEF-GA-2013-623652]. P.K. was supported by the Engineering and Physical Sciences Research Council [EPSRC, EP/H003541]. This work was supported by the EPSRC and the Winton Programme for the Physics of Sustainability.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M. and M.L. analysed the data, M.L., C.S. and T.W. carried out the time-resolved experiments, T.B.K. performed the steady-state Raman spectroscopy, A.R. and P.K. conceived of the project. All authors discussed the results. A.J.M., A.R. and P.K. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Akshay Rao or Philipp Kukura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musser, A., Liebel, M., Schnedermann, C. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nature Phys 11, 352–357 (2015). https://doi.org/10.1038/nphys3241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing