Abstract
Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow1,2. In the presence of a magnetic field, the maximum supercurrent oscillates3 and each oscillation corresponding to the entry of one Josephson vortex into the barrier4. Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators5 or qubits for quantum computing6, in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions7 using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles8, and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.
Similar content being viewed by others
Main
In 1963 Rowell3 observed the oscillations of the critical current in superconducting junctions subject to a magnetic field. Since his pioneering discovery, the effect has been reported in numerous superconductor–normal metal–superconductor (SNS) weak links4,9, including many examples in which the links were made of recently discovered materials such as graphene10 and topological insulators11,12. This macroscopic quantum interference effect is commonly interpreted as a sequence of Josephson vortices4 penetrating the junction. By analogy with the Abrikosov vortices in type II superconductors13, Josephson vortices were defined as regions with zero net circulating current and enclosing a magnetic flux quantum, Φ0 = h/2e. Several theoretical works, motivated by superconducting vortex pinning at grain boundaries14,15,16,17,18, studied the large-scale evolution of Abrikosov18 and Pearl19,20 vortices in the S-parts of zero-width tunnel junctions. Yet, the spectral fingerprint of Josephson vortices and their spatial organization in the N-parts of extended Josephson junctions have so far remained undecided, and the subject of controversy. The common wisdom is that Josephson vortices lack a specific spectral signature and therefore cannot be identified. By contrast, recent microscopic calculations predicted that in diffusive SNS junctions Josephson vortices should be manifested as a spatial modulation of the proximity mini-gap in the quasiparticle excitation spectrum of the normal region of the junction7. Thus, Josephson vortices could presumably have normal cores—regions where the proximity gap vanishes, making possible their detection and imaging by, for example, scanning tunnelling microscopy (STM), as is readily done for Abrikosov vortices in superconductors21.
With this idea in mind, we created (see Methods) a lateral SNS network of superconducting Pb nanocrystals (yellow areas in Fig. 1a) linked together by an atomically thin Pb wetting layer (brown regions in Fig. 1a). Depending on the growth conditions, the Pb wetting layer is superconducting when it is crystalline16,22, whereas it is metallic when its structure is amorphous23. The Pb islands become superconducting below a critical temperature Tc ≈ 6.5 K (refs 24, 25, 26, 27, 28). The local tunnelling conductance spectra measured on top of the superconducting islands at T = 0.3 K ≪ Tc (see Methods) exhibit a superconducting gap Δ = 1.2 meV (Fig. 1d, curve S). Here, the wetting layer is non-superconducting, and the conductance spectra measured far from the islands show no superconducting gap, but rather a tiny dip centred at the Fermi level (Fig. 1d, curve WL). This dip is a fingerprint of the Altshuler–Aronov zero-bias anomaly29 due to electron–electron interaction in this two-dimensional diffusive metal23. Very close to the islands the superconducting correlations induce a small proximity gap in tunnelling spectra of the wetting layer23 (Fig. 1d, curve P). In the zero-bias conductance map in Fig. 1b the proximity gap appears as a bluish halo extending over a few tens of nanometres away from islands. In locations where the edges of neighbouring islands get very close, this proximity halo becomes reinforced and appears as a deeper blue. The phenomenon reflects the overlap of superconducting correlations induced by both islands30,31,32, which enhance the proximity gap (Fig. 1d, curve J). This results in the formation of several SNS Josephson junctions, such as those seen in locations J1–J4 (Fig. 1b, c).
We now follow the evolution of the proximity links in an applied magnetic field. The spectroscopic map acquired at 60 mT shows the usual penetration of Abrikosov vortices in the large islands, whereas the small islands remain in the vortex-free Meissner state28 (Fig. 1c). By contrast, unusual features are revealed in proximity links inside the SNS junctions, and identified as Josephson vortices. Precisely, whereas at zero field the proximity gap is observed in all three locations A, B, C of the junction J1 (see Fig. 1b and zoom of J1 in Fig. 1e), at 60 mT no proximity gap is observed in B (red spectrum in Fig. 1f), but instead a normal state with its Altshuler–Aronov zero-bias dip is recovered. In the neighbouring positions A and C, however, the proximity gap persists (Fig. 1e, f). This behaviour is confirmed by the direct inspection of the conductance map in Fig. 1f, where two clear Josephson links remain at 60 mT in locations A and C (low conductance in blue), whereas in B the proximity gap vanishes (high conductance in yellow-red). The normal region in B surrounded by gapped areas is thus indeed a Josephson vortex core. The spectroscopic maps in Fig. 2a, b focus on junctions J2, J3 and J4, located in the bottom framed part of Fig. 1c. They show how Josephson vortex configurations change with magnetic field. Both J2 and J3 junctions accept one Josephson vortex at 120 mT (Fig. 2a) and two at 180 mT (Fig. 2b). A striking effect is observed inside the junction J2. At 120 mT the proximity gap is destroyed in its centre, where a Josephson vortex core settles (Fig. 2a). At 180 mT, however, this region returns to the proximity gapped state, thus separating two neighbouring Josephson vortex cores (Fig. 2b). By contrast, the very short and narrow junction J4 does not accept any Josephson vortex in its centre up to 180 mT. In all studied SNS junctions, Josephson vortex cores are in the normal state, as predicted7.
The interpretation of our observation in terms of Josephson vortex cores is fully corroborated by the numerical simulations in Fig. 2c, d; the calculation method is described in Fig. 3. We first calculated the Abrikosov vortex configurations in the islands using the Ginzburg–Landau formalism (Supplementary Information 1). As an example, in Fig. 3a the Cooper-pair density map calculated at 60 mT reproduces the experimentally observed Abrikosov vortex configuration (Fig. 1c). In Fig. 3b the corresponding phase portrait of the superconducting order parameter shows that the interplay between Meissner and vortex currents results in a spatially evolving phase inside islands. At this point, the physical origin of Josephson vortices can be understood by considering the gauge-invariant local phase difference across the junction, where φ(ri) are local phases of the order parameter at two island edges at positions ri (on opposite sides of a given junction) and A is the vector potential (Supplementary Information 2). At locations in which φ∗ is 0, ±2π, ±4π, ±6π, …, the superconducting correlations induced by both islands are in phase, their constructive interference resulting in a well-developed proximity gap. In contrast, in locations where φ∗ is ±π, ±3π, ±5π… the superconducting correlations interfere destructively and the proximity gap is suppressed33. This latter situation corresponds to Josephson vortex cores. Using φ∗ we find a current circulating around Josephson vortices. As a rough approximation, the Josephson current2 can be considered locally as simply proportional to sin(φ∗). In junction J1, for instance, in locations between A and B, φ∗ varies continuously from 0 to π, sin(φ∗) > 0 and some net Josephson current flows locally from one island edge to the other island. In the opposite case, from B to C the phase difference φ∗ varies continuously from π to 2π, sin(φ∗) < 0, and the current flows in the opposite direction. Therefore, Josephson current circulates around the point B, thus justifying the term ‘Josephson vortex’. The above phase considerations served as a basis for numerical simulations. First, the superconducting phase portrait φGL(r) was generated using Ginzburg–Landau formalism for independent islands. This phase portrait is not unique: it varies depending on the choice of the gauge. Figure 3b shows one of such phase portraits obtained using the symmetric gauge A(r) = (1/2)B × r, where B is the magnetic field, with the origin in the image centre. Because islands are decoupled, the phase portrait is defined up to arbitrary constant phases αi for each ith island (that is, one can freely use without affecting the superconducting state in the islands). Once the islands are proximity-coupled, the difference αi − αj between two island phases of the same junction is no longer arbitrary but respects two constraints: first, in the absence of an external circuit the total Josephson current crossing a junction is null; second, the free energy of the Josephson junctions is minimized. Starting from the phase portrait in Fig. 3b, we calculated, for each location inside the junctions, the strength of the superconducting correlations as the interference between evanescent waves having a gauge-independent phase difference φ∗(r). In these calculations we fulfilled the above constraints and fixed the island phases αi self-consistently, with no need for adjustable parameters (for more details see Supplementary Information 2). The result of our calculations is shown in Fig. 3c, ideally reproducing the experimentally observed position and extent of the Josephson vortex in the junction J1 (Fig. 1c). In the same manner the correlation maps in Fig. 2c, d were calculated, again matching the experimental findings (Fig. 2a, b). The success of our simulation clearly highlights that the Josephson vortices in our system originate from quantum interference.
Next, we calculated the spatial evolution of the density of states inside the Josephson vortex core, which cannot be obtained from correlation maps, by using the microscopic Usadel approach7,34 (Supplementary Information 3). Figure 4a shows the computed map of the local density of states at the Fermi energy for a junction similar to J1. The map demonstrates the suppression of the proximity gap inside Josephson vortex cores7. This suppression is further detailed in Fig. 4b, where we show the local density of states as a function of energy at various distances from the centre of a vortex. Using these results we generated the corresponding tunnelling conductance spectra (Fig. 4c). In this calculation the Altshuler–Aronov zero-bias effect was taken into account23. As one can see, the Usadel approach reproduces qualitatively the observed vanishing of the proximity gap in Fig. 1e, f.
In the present experimental study, the gauge-invariant phase difference that generates Josephson vortices was created with the help of an applied magnetic field. Equivalently, the gauge-invariant phase differences may be generated by edge supercurrents circulating in S-electrodes. Indeed, in zero magnetic field, taking the gauge A = 0, we get a simple expression relating the current and phase, J ≈ Jc(ξ/π)∇ φ, where ξ is the effective coherence length, and Jc is the critical current in the electrode, |∇ φ| ≤ (π/ξ). Therefore, if the superconducting electrodes of the junction carry oppositely directed currents along the electrode edge, a gauge-invariant phase difference appears across the junction. It evolves with the lateral position r inside the junction as φ∗(r) ≈ 2π(J/Jc)(r/ξ), leading to the formation of a Josephson vortex. To confirm this idea, we carried out calculations of the local density of states in SNS junctions where currents flow inside S-leads along the junction edges with no applied magnetic field (Supplementary Information 3). We show in Fig. 4d a typical result for a junction similar to J1, where we have assumed that opposite currents circulate along both interface edges. As one can see, there appear Josephson vortices with normal cores, very similar to those induced magnetically (see Fig. 4a). In this case, the density and size of generated Josephson vortices is simply proportional to the intensity of circulating edge currents. Moreover, vortex generation may also be achieved if only one superconducting lead carries a supercurrent, as we demonstrate in Fig. 4e. By tuning intensities of supercurrents in leads one may pin vortices at one or other edge. In a SNS device, such as the one sketched in Fig. 4f, it should be possible to create Josephson vortices by simply applying currents through superconducting leads. Such a method would open new pathways for generation and control of quantum objects by purely electrical means, without the need of any externally applied magnetic field.
Methods
The 7 × 7 reconstructed n-Si(111) (n ≈ 1019 cm−3) was prepared by direct current heating to 1,200 °C, followed by annealing procedure between 900 and 500 °C. Subsequently, a few atomic layers of Pb were evaporated on the Si(111)-7 × 7 kept at room temperature, using an electron beam evaporator calibrated with a quartz micro-balance. The resulting flat-top (111)-oriented single nanocrystals of Pb are interconnected via a disordered atomic wetting layer of Pb (refs 23, 24, 25, 26, 27, 28). During sample preparation the pressure did not exceed P = 3 × 10−10 mbar. The sample structure was controlled in both real and reciprocal space by scanning tunnelling microscopy and low-energy electron diffraction.
The scanning tunnelling spectroscopy measurements were performed in situ with a homemade apparatus, at a base temperature of 320 mK and in a ultrahigh vacuum with P < 3 × 10−11 mbar; the electron temperature was estimated to be 390 mK. Mechanically sharpened Pt/Ir tips were used. The bias voltage was applied to the sample with respect to the tip. Typical set-point parameters for spectroscopy are 150 pA at V = −5 mV. The tunnelling conductance curves dI(V)/dV were numerically derived from raw I(V) experimental data. Each conductance map is extracted from a set of data consisting of spectroscopic I(V) curves measured at each point of a 512 × 512 grid, acquired simultaneously with the topographic image. The magnetic field was applied perpendicular to the sample surface.
The frameworks for the theoretical simulations in this paper are the phenomenological Ginzburg–Landau (GL) theory4 and the microscopic Usadel approach7,34. The GL simulations were implemented on a Cartesian grid for the exact geometry of the islands and expected electron mean-free path in the samples (Supplementary Information 1), using STM mapping from the experiment, with a grid spacing of 1 nm. The equations were solved self-consistently in three dimensions and contain higher-order derivatives; for this demanding computation we have used GPU parallel computing. The description of the local density of states and tunnelling spectra of the SNS junctions was carried out using the Usadel approach, as explained in detail in the Supplementary Information 3.
References
De Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964).
Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).
Rowell, J. M. Magnetic field dependence of the Josephson tunnel current. Phys. Rev. Lett. 11, 200–202 (1963).
Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).
Ulrich Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nature Photon. 7, 702–710 (2013).
Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).
Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).
Andreev, A. F. Electron spectrum of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 49, 655–660 (1965); Sov. Phys. JETP 22, 455–458 (1966)
Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, 1982).
Heersche, H. B., Jarrillo-Herrero, P., Oostinga, O. O., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).
Veldhorst, M. et al. Josephson supercurrent through a topological insulator surface state. Nature Mater. 11, 417–421 (2012).
Williams, J. R. et al. Unconventional Josephson effect in hybrid superconductor–topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012).
Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957).
Maggio-Aprile, I. et al. Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O7−δ . Nature 390, 487–490 (1997).
Song, C-L. et al. Suppression of superconductivity by twin boundaries in FeSe. Phys. Rev. Lett. 109, 137004 (2012).
Brun, C. et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nature Phys. 10, 444–450 (2014).
Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).
Blatter, G. & Geshkenbein, V. B. The Physics of Superconductors Vol. 1 (eds Bennemannand, K. H. & Kettersonet, J. B.) Ch. 10, 896–897 (Springer-Verlag, 2003)
Gurevich, A. Nonlocal Josephson electrodynamics and pinning in superconductors. Phys. Rev. B 46, 3187(R) (1992).
Kogan, V. G. et al. Josephson junction in a thin film. Phys. Rev. B 63, 144501 (2001).
Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).
Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Phys. 6, 104–108 (2010).
Serrier-Garcia, L. et al. Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal. Phys. Rev. Lett. 110, 157003 (2013).
Eom, D., Qin, S., Chou, M-Y. & Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 96, 027005 (2006).
Nishio, T. et al. Superconducting Pb island nanostructures studied by scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 101, 167001 (2008).
Cren, T., Fokin, D., Debontridder, F., Dubost, F. & Roditchev, D. Ultimate vortex confinement studied by scanning tunneling spectroscopy. Phys. Rev. Lett. 102, 127005 (2009).
Brun, C. et al. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 102, 207002 (2009).
Cren, T., Serrier-Garcia, L., Debontridder, F. & Roditchev, D. Vortex fusion and giant vortex states in confined superconducting condensates. Phys. Rev. Lett. 107, 097202 (2011).
Altshuler, B. L. & Aronov, A. G. in Electron–Electron Interactions in Disordered Systems (eds Efros, A. L. & Pollak, M.) (Elsevier Science Publisher B. V., 1985).
Golubov, A. A. & Kupriyanov, M. Y. Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes. J. Low Temp. Phys. 70, 83–130 (1988).
Belzig, W. et al. Local density of states in a dirty normal metal connected to a superconductor. Phys. Rev. B 54, 9443–9448 (1996).
Kim, J. et al. Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films. Nature Phys. 8, 464–469 (2012).
Le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).
Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).
Acknowledgements
T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project ELECTROVORTEX and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5).
Author information
Authors and Affiliations
Contributions
The experiments were conceived by D.R., T.C., C.B. and F.D. The experiments were performed by C.B., D.R., L.S-G., T.C., V.S. and F.D. Theoretical support was provided by J.C.C., V.H.L.B. and M.V.M. Superconducting correlation maps were calculated by T.C. The manuscript was written by D.R., J.C.C. and T.C. with comments and input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2247 kb)
Rights and permissions
About this article
Cite this article
Roditchev, D., Brun, C., Serrier-Garcia, L. et al. Direct observation of Josephson vortex cores. Nature Phys 11, 332–337 (2015). https://doi.org/10.1038/nphys3240
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3240